Skip to main content
U.S. flag

An official website of the United States government

Here’s how you know

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

HTTPS

Secure .gov websites use HTTPS
A lock (LockA locked padlock) or https:// means you have safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Environmental Topics
  • Laws & Regulations
  • Report a Violation
  • About EPA
Contact Us

Grantee Research Project Results

Spatiotemporal Groundwater Monitoring Network Design Using Ensemble Kalman Filtering, Multiobjective Evolutionary Optimization, and Interactive Visualization

EPA Grant Number: F07A20389
Title: Spatiotemporal Groundwater Monitoring Network Design Using Ensemble Kalman Filtering, Multiobjective Evolutionary Optimization, and Interactive Visualization
Investigators: Kollat, Joshua B.
Institution: Pennsylvania State University
EPA Project Officer: Lee, Sonja
Project Period: August 1, 2007 through August 1, 2010
RFA: STAR Graduate Fellowships (2007) RFA Text |  Recipients Lists
Research Category: Fellowship - Civil Engineering , Academic Fellowships , Safer Chemicals

Objective:

The health risks and cleanup costs of groundwater contamination represent a significant burden to our society. This research will develop an improved framework for designing cost effective long-term groundwater monitoring networks that can be adaptively managed based on statistical assessments of contaminate fate-and-transport and changing site conditions.

Approach:

This research will make significant contributions towards long-term groundwater monitoring network design by combining Ensemble Kalman Filtering, multiobjective evolutionary optimization, interactive visualization, and adaptive management strategies. The tractability of optimal monitoring network design will be significantly improved through the application of a parallel evolutionary multiobjective optimization algorithm that is capable of “learning” the structure of the network design problem. Subsequent integration of Ensemble Kalman Filtering will add robustness to the proposed optimization framework by providing uncertainty-based evaluations of site risks and contaminant transport dynamics. The final phase of research will develop interactive visualization tools that seek to simplify and enhance monitoring design and decision making. The visualization tools will allow decision makers to better understand and explore large monitoring data sets, ultimately enhancing their ability to adaptively manage the networks over time in a cost effective manner.

Expected Results:

The tools developed in this research will be demonstrated on a suite of simulated and experimental long-term groundwater monitoring network design applications. The experiments include network design scenarios for a real-world contaminant plume simulation and a scaled physical aquifer transport experiment made available by the University of Vermont. It is anticipated that the results of these test cases will test and validate that the proposed framework is capable of enhancing the environmental decision maker’s ability to design cost effective groundwater monitoring networks. Ultimately, the new design framework will provide significant cost savings over prior design methods while at the same time improving risk management.

Supplemental Keywords:

long-term groundwater monitoring network design, groundwater, groundwater contamination, observation network design, uncertainty, risk, risk management, geostatistics, environmental decision making, Ensemble Kalman Filtering, multiobjective evolutionary optimization, evolutionary algorithm, scientific visualization, adaptive management, parallel computing, computational tools, environmental modeling, contaminant transport,, Ecosystem Protection/Environmental Exposure & Risk, Scientific Discipline, Water, Restoration, Aquatic Ecosystem Restoration, Environmental Monitoring, integrated assessment, groundwater remediation, groundwater pollution

Progress and Final Reports:

  • 2008
  • 2009
  • Final
  • Top of Page

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.

    Site Navigation

    • Grantee Research Project Results Home
    • Grantee Research Project Results Basic Search
    • Grantee Research Project Results Advanced Search
    • Grantee Research Project Results Fielded Search
    • Publication search
    • EPA Regional Search

    Related Information

    • Search Help
    • About our data collection
    • Research Grants
    • P3: Student Design Competition
    • Research Fellowships
    • Small Business Innovation Research (SBIR)
    Contact Us to ask a question, provide feedback, or report a problem.
    Last updated April 28, 2023
    United States Environmental Protection Agency

    Discover.

    • Accessibility
    • Budget & Performance
    • Contracting
    • EPA www Web Snapshot
    • Grants
    • No FEAR Act Data
    • Plain Writing
    • Privacy
    • Privacy and Security Notice

    Connect.

    • Data.gov
    • Inspector General
    • Jobs
    • Newsroom
    • Open Government
    • Regulations.gov
    • Subscribe
    • USA.gov
    • White House

    Ask.

    • Contact EPA
    • EPA Disclaimers
    • Hotlines
    • FOIA Requests
    • Frequent Questions

    Follow.