Skip to main content
U.S. flag

An official website of the United States government

Here’s how you know

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

HTTPS

Secure .gov websites use HTTPS
A lock (LockA locked padlock) or https:// means you have safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Environmental Topics
  • Laws & Regulations
  • Report a Violation
  • About EPA
Contact Us

Grantee Research Project Results

The Effect of Surface Coatings on the Environmental and Microbial Fate of Nanoiron and Feoxide Nanoparticles

EPA Grant Number: R833326
Title: The Effect of Surface Coatings on the Environmental and Microbial Fate of Nanoiron and Feoxide Nanoparticles
Investigators: Lowry, Gregory V. , Tilton, Robert D. , Alvarez, Pedro J. , Kim, Chris , Minkley, Edwin
Institution: Carnegie Mellon University , Chapman University , Rice University
EPA Project Officer: Aja, Hayley
Project Period: September 1, 2006 through August 31, 2009
Project Amount: $400,000
RFA: Exploratory Research: Nanotechnology Research Grants Investigating Environmental and Human Health Effects of Manufactured Nanomaterials: a Joint Research Solicitation-EPA, NSF, NIOSH, NIEHS (2006) RFA Text |  Recipients Lists
Research Category: Nanotechnology , Safer Chemicals

Description:

Responsible use of manufactured nanomaterials in environmental applications (e.g. nanoiron) and prudent management of the associated risks requires a fundamental understanding of their mobility, bioavailability, and impacts on a wide variety of organisms. We lack a fundamental understanding of the environmental and microbial fate of nanoiron and its metal oxide oxidation product (magnetite) under environmental conditions. It is also not clear what effect surface coatings present on nanoiron (and many other NPs) will have on the rate and extent of oxidation, their mobility after reaction (and hence potential exposure risk), their interactions with soil bacteria, their effect on the soil microbial health and diversity under natural environmental conditions, or on human health.

Objective:

The study objectives are to determine the effect of common NP surface coatings on nanoiron reactivity, mobility, fate, and effect on soil bacteria. This will be accomplished by: 1) examining the fate of coated and uncoated nanoiron and Fe-oxide NPs in active and sterilized soil microcosms; 2) determining the mobility of fresh and reacted NPs in soil columns; 3) evaluating the impact of surface coatings on NP-bacteria interactions and toxicity; and 4) evaluating the changes in microbial ecology due to nanoiron and Fe-oxide NP exposure. NP mobility and fate in the environment, negative or beneficial interactions with soil bacteria, and reactivity with soil contaminants are controlled by particle surface chemistry. Adsorbed surface coatings, e.g. polymers, polyelectrolytes, and surfactants dictate the interactions of NPs with environmental media and microbes and therefore can be used to control their environmental fate and potential toxicity, and to enhance synergistic biogeochemical interactions of nanoiron with soil microorganisms such as biostimulation by cathodic hydrogen production and reductive dissolution of inert Fe(III) oxides that passivate the nanoiron surface.

Expected Results:

This project will provide fundamental information on the effects of typical NP surface coatings on the fate and mobility of nanoiron and Fe-oxide NPs after exposure under realistic environmental conditions, and the impact of these surface coatings on microbial processes important to site remediation and ecosystem health. This will enable the synthesis and use of ecofriendly surface-coated nanoiron and Fe-oxide NPs, and enable rational risk-based decision making regarding their production, use, and disposal.

Publications and Presentations:

Publications have been submitted on this project: View all 17 publications for this project

Journal Articles:

Journal Articles have been submitted on this project: View all 7 journal articles for this project

Supplemental Keywords:

remediation, NZVI, ecology, ecotoxicity,, Health, Scientific Discipline, ENVIRONMENTAL MANAGEMENT, Health Risk Assessment, Risk Assessments, Biochemistry, Risk Assessment, fate and transport, microbial indicators, bioavailability, nanotechnology, surface coating, nanoiron, biochemical research, exposure assessment

Progress and Final Reports:

  • 2007
  • 2008 Progress Report
  • Final
  • Top of Page

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.

    Project Research Results

    • Final
    • 2008 Progress Report
    • 2007
    17 publications for this project
    7 journal articles for this project

    Site Navigation

    • Grantee Research Project Results Home
    • Grantee Research Project Results Basic Search
    • Grantee Research Project Results Advanced Search
    • Grantee Research Project Results Fielded Search
    • Publication search
    • EPA Regional Search

    Related Information

    • Search Help
    • About our data collection
    • Research Grants
    • P3: Student Design Competition
    • Research Fellowships
    • Small Business Innovation Research (SBIR)
    Contact Us to ask a question, provide feedback, or report a problem.
    Last updated April 28, 2023
    United States Environmental Protection Agency

    Discover.

    • Accessibility
    • Budget & Performance
    • Contracting
    • EPA www Web Snapshot
    • Grants
    • No FEAR Act Data
    • Plain Writing
    • Privacy
    • Privacy and Security Notice

    Connect.

    • Data.gov
    • Inspector General
    • Jobs
    • Newsroom
    • Open Government
    • Regulations.gov
    • Subscribe
    • USA.gov
    • White House

    Ask.

    • Contact EPA
    • EPA Disclaimers
    • Hotlines
    • FOIA Requests
    • Frequent Questions

    Follow.