Skip to main content
U.S. flag

An official website of the United States government

Here’s how you know

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

HTTPS

Secure .gov websites use HTTPS
A lock (LockA locked padlock) or https:// means you have safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Environmental Topics
  • Laws & Regulations
  • Report a Violation
  • About EPA
Contact Us

Grantee Research Project Results

2006 Progress Report: Development of Efficient Methods for the Genetic Transformation of Willow and Cottonwood for Increased Remediation of Pollutants

EPA Grant Number: R829479C028
Subproject: this is subproject number 028 , established and managed by the Center Director under grant R829479
(EPA does not fund or establish subprojects; EPA awards and manages the overall grant for this center).

Center: Center for Air, Climate, and Energy Solutions
Center Director: Robinson, Allen
Title: Development of Efficient Methods for the Genetic Transformation of Willow and Cottonwood for Increased Remediation of Pollutants
Investigators: Doty, Sharon
Institution: University of Washington
EPA Project Officer: Aja, Hayley
Project Period: October 1, 2004 through September 30, 2007 (Extended to December 31, 2007)
Project Period Covered by this Report: October 1, 2005 through September 30, 2006
RFA: The Consortium for Plant Biotechnology Research, Inc., Environmental Research and Technology Transfer Program (2001) RFA Text |  Recipients Lists
Research Category: Hazardous Waste/Remediation , Targeted Research

Objective:

There are no published reports of willow transformation, so the primary aim of this project is to develop effective transformation protocols. The specific aims are to: propagate sterile explants of the willow clones in tissue culture; begin embryonic callus culture; optimize transformation and regeneration methods; verify transgene presence and expression in transformed willow; and evaluate transformation frequencies from the different protocols. The genes we will introduce to enhance biofuel production and phytoremediation are an antisense 4CL-1 gene cloned from willow and a cytochrome P450 2E1 gene, respectively.

Progress Summary:

Since the funding did not become available until mid-April and this annual report is due in mid-October, the following progress report covers only the first 6 months. The five willow clones and cuttings of wild-grown willow grew well and readily rooted in standard plant growth medium (Figure 1). However, only one of the willow lines responded well to the auxin treatment to induce callus culture (Figure 2). Although callus formed from all of the willow lines, most were brown or grayish in color and failed to grow (Figure 3). We therefore turned to cytokinin treatment to induce shoot growth. Salix clones SV-1 and Sx61 responded especially well to this treatment, producing shoots from leaf explants.

Salix  Clone, SV-1, Growing Well in Tissue Culture.

Figure 1. Salix Clone, SV-1, Growing Well in Tissue Culture

Callus From Salix Clone, Sx61, on  Medium Containing Low Levels of 2,4-D

Figure 2. Callus From Salix Clone, Sx61, on Medium Containing Low Levels of 2,4-D

Callus From Salix Clone, 94006,  Grew Poorly

Figure 3. Callus From Salix Clone, 94006, Grew Poorly

Agrobacterium-mediated transformation of willow seems to be ineffective because all of the willow lines responded with severe necrosis. This was also noted by other groups that attempted willow transformation. Therefore, we will turn to the use of the biolistic transformation method.

In order to increase the efficiency of biofuel production, we are attempting to clone one of the lignin biosynthesis genes in order to downregulate its expression in transgenic willow. We designed “universal primers” for the 4CL-1 gene, prepared genomic DNA of all the willow clones, and performed PCR. Several of the clones did yield PCR product of the appropriate size. We are in the process of cloning these gene fragments, and will verify them by sequencing.

Our work with enhancing phytoremediation in aspen trees by overexpressing CYP2E1 has been very effective. This project, sponsored by the U.S. Department of Energy and the National Institute of Environmental Health Sciences, is nearly ready for publication. We will introduce this gene into willow when the transformation method has been developed.

Journal Articles:

No journal articles submitted with this report: View all 1 publications for this subproject

Supplemental Keywords:

Scientific Discipline, Waste, TREATMENT/CONTROL, POLLUTANTS/TOXICS, Treatment Technologies, Technology, Chemicals, Biochemistry, Bioremediation, Molecular Biology/Genetics, Biology, plant-based remediation, transgenic plants, plant uptake studies, biotechnology, plant biotechnology, phytoremediation

Progress and Final Reports:

Original Abstract
  • 2005
  • 2007
  • Final

  • Main Center Abstract and Reports:

    R829479    Center for Air, Climate, and Energy Solutions

    Subprojects under this Center: (EPA does not fund or establish subprojects; EPA awards and manages the overall grant for this center).
    R829479C001 Plant Genes and Agrobacterium T-DNA Integration
    R829479C002 Designing Promoters for Precision Targeting of Gene Expression
    R829479C003 aka R829479C011 Biological Effects of Epoxy Fatty Acids
    R829479C004 Negative Sense Viral Vectors for Improved Expression of Foreign Genes in Insects and Plants
    R829479C005 Development of Novel Plastics From Agricultural Oils
    R829479C006 Conversion of Paper Sludge to Ethanol
    R829479C007 Enhanced Production of Biodegradable Plastics in Plants
    R829479C008 Engineering Design of Stable Immobilized Enzymes for the Hydrolysis and Transesterification of Triglycerides
    R829479C009 Discovery and Evaluation of SNP Variation in Resistance-Gene Analogs and Other Candidate Genes in Cotton
    R829479C010 Woody Biomass Crops for Bioremediating Hydrocarbons and Metals
    R829479C011 Biological Effects of Epoxy Fatty Acids
    R829479C012 High Strength Degradable Plastics From Starch and Poly(lactic acid)
    R829479C013 Development of Herbicide-Tolerant Energy and Biomass Crops
    R829479C014 Identification of Receptors of Bacillus Thuringiensis Toxins in Midguts of the European Corn Borer
    R829479C015 Coordinated Expression of Multiple Anti-Pest Proteins
    R829479C016 A Novel Fermentation Process for Butyric Acid and Butanol Production from Plant Biomass
    R829479C017 Molecular Improvement of an Environmentally Friendly Turfgrass
    R829479C018 Woody Biomass Crops for Bioremediating Hydrocarbons and Metals. II.
    R829479C019 Transgenic Plants for Bioremediation of Atrazine and Related Herbicides
    R829479C020 Root Exudate Biostimulation for Polyaromatic Hydrocarbon Phytoremediation
    R829479C021 Phytoremediation of Heavy Metal Contamination by Metallohistins, a New Class of Plant Metal-Binding Proteins
    R829479C022 Development of Herbicide-Tolerant Energy and Biomass Crops
    R829479C023 A Novel Fermentation Process for Butyric Acid and Butanol Production from Plant Biomass
    R829479C024 Development of Vectors for the Stoichiometric Accumulation of Multiple Proteins in Transgenic Crops
    R829479C025 Chemical Induction of Disease Resistance in Trees
    R829479C026 Development of Herbicide-Tolerant Hardwoods
    R829479C027 Environmentally Superior Soybean Genome Development
    R829479C028 Development of Efficient Methods for the Genetic Transformation of Willow and Cottonwood for Increased Remediation of Pollutants
    R829479C029 Development of Tightly Regulated Ecdysone Receptor-Based Gene Switches for Use in Agriculture
    R829479C030 Engineered Plant Virus Proteins for Biotechnology

    Top of Page

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.

    Project Research Results

    • Final
    • 2007
    • 2005
    • Original Abstract
    1 publications for this subproject
    Main Center: R829479
    208 publications for this center
    44 journal articles for this center

    Site Navigation

    • Grantee Research Project Results Home
    • Grantee Research Project Results Basic Search
    • Grantee Research Project Results Advanced Search
    • Grantee Research Project Results Fielded Search
    • Publication search
    • EPA Regional Search

    Related Information

    • Search Help
    • About our data collection
    • Research Grants
    • P3: Student Design Competition
    • Research Fellowships
    • Small Business Innovation Research (SBIR)
    Contact Us to ask a question, provide feedback, or report a problem.
    Last updated April 28, 2023
    United States Environmental Protection Agency

    Discover.

    • Accessibility
    • Budget & Performance
    • Contracting
    • EPA www Web Snapshot
    • Grants
    • No FEAR Act Data
    • Plain Writing
    • Privacy
    • Privacy and Security Notice

    Connect.

    • Data.gov
    • Inspector General
    • Jobs
    • Newsroom
    • Open Government
    • Regulations.gov
    • Subscribe
    • USA.gov
    • White House

    Ask.

    • Contact EPA
    • EPA Disclaimers
    • Hotlines
    • FOIA Requests
    • Frequent Questions

    Follow.