Skip to main content
U.S. flag

An official website of the United States government

Here’s how you know

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

HTTPS

Secure .gov websites use HTTPS
A lock (LockA locked padlock) or https:// means you have safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Environmental Topics
  • Laws & Regulations
  • Report a Violation
  • About EPA
Contact Us

Grantee Research Project Results

Growing Alternative Sustainable Buildings: Biocomposite Products from Natural Fiber, Biodegradable and Recyclable Polymer Materials for Load-bearing Construction Components

EPA Grant Number: SU833202
Title: Growing Alternative Sustainable Buildings: Biocomposite Products from Natural Fiber, Biodegradable and Recyclable Polymer Materials for Load-bearing Construction Components
Investigators: Skerlos, Steven J. , Popp, Sarah Ann , Heininger, Eric C. , Bard, Joshua D. , Cox, Brandon E. , Bayer, Carrie E. , Jelinek, Steven J. , Putalik, Erin S. , Stepowski, John S. , Kerfoot, Katherine S. , Freeman, Jeremy W. , Keoleian, Greg , Zhang, Han , Giles, Harry , Cho, Michelle , Yamamoto, Mitsuyo , Robertson, Richard , Lin, Shangchao , Driver, Stephanie , DiCorcia, Thomas
Institution: University of Michigan
EPA Project Officer: Page, Angela
Phase: II
Project Period: September 1, 2006 through August 31, 2008
Project Amount: $75,000
RFA: P3 Awards: A National Student Design Competition for Sustainability Focusing on People, Prosperity and the Planet - Phase 2 (2006) Recipients Lists
Research Category: Nanotechnology , Pollution Prevention/Sustainable Development , P3 Awards , P3 Challenge Area - Sustainable and Healthy Communities , Sustainable and Healthy Communities

Objective:

Buildings (residential and commercial) account for about 40% of the total annual energy consumption in the United States of America, they produce 35% of the total carbon dioxide emissions, and attribute 40% of landfill wastes. The building industry is also a large consumer of non-renewable materials and this trend has escalated dramatically over the past century. To this end, we have been addressing sustainability concerns related to building construction materials through an integrative research approach applied to building façade elements where we can collectively influence design, materials, construction, energy consumption and disposal. We have been carrying out preliminary research in the design development phase of this project and during the second phase, we plan to create a framework and implementation plan for manufacturing, erection, use and disposal. The final outcome for construction will be an inevitable symbiosis of the process itself. The end result will be to propose a range of building products for transparent and translucent façade enclosures that holistically embrace all the manufacturing and end use issues from cradle to grave and life thereafter, using bio-composite and recyclable polymer materials. We have been modeling our research project on technologies and materials that will form a new paradigm that rethinks the design of building enclosures in the future. Alternative typologies of transparent and translucent load-bearing façade systems based on biocomposite and recyclable materials were investigated architecturally, structurally, thermally, materially and environmentally. Together with the means of manufacture, we show how efficiencies were obtained and verified. The success of the project clearly shows the future potential for biocomposite façade systems which ultimately contribute to reducing energy consumption, pollutant emissions and non-renewable material uses. In order to progress our research, we set out to investigate the potential for using biocomposite and recyclable polymer materials in buildings, associated with all the external factors that would affect this choice. To this end we set the following objectives for the project:

  • Evaluate the panels to improve thermal performance
  • Determine the influence of air leakage on performance
  • Optimize maximum panel sizes for manufacture and installation
  • Evaluate the inclusion of 3rd glazing (middle) layer to improve performance
  • Optimization of material properties for structural performance
  • Optimization of composite core vs skin thickness for structural performance
  • Impact testing and resistance for high performance applications
  • Further environmental impact analysis
  • Further building modeling to more accurately quantify energy performance compared to other systems
  • Develop parametric optimization methods to customize the cell sizes
  • Development of software evaluation tools

Publications and Presentations:

Publications have been submitted on this project: View all 1 publications for this project

Supplemental Keywords:

ecological effects, bioavailability, ecosystem, habitat, integrated assessment, green chemistry, life-cycle analysis, alternatives, sustainable development, clean technologies, innovative technology, renewable, waste reduction, waste minimization, cost benefit, public good, conservation, environmental assets, engineering, ecology, analytical, EPA regions, agriculture, industry, building construction, manufacturing methods, technology transfer, product design,, Sustainable Industry/Business, RFA, Scientific Discipline, POLLUTION PREVENTION, Technology for Sustainable Environment, Sustainable Environment, Environmental Engineering, Energy, recycled polymers, biocomposite, environmental sustainability, energy conservation, sustainable development, alternative materials, clean manufacturing, polymer composite materials, environmental conscious construction

Relevant Websites:

Phase 1 Abstract

Progress and Final Reports:

  • 2007
  • Final Report

  • P3 Phase I:

    Growing Alternative Sustainable Buildings: Bio-composite Products from Natural Fiber, Biodegradable and Recyclable Polymer Materials for Load-bearing Construction Components  | Final Report

    Top of Page

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.

    Project Research Results

    • Final Report
    • 2007
    • P3 Phase I | Final Report
    1 publications for this project

    Site Navigation

    • Grantee Research Project Results Home
    • Grantee Research Project Results Basic Search
    • Grantee Research Project Results Advanced Search
    • Grantee Research Project Results Fielded Search
    • Publication search
    • EPA Regional Search

    Related Information

    • Search Help
    • About our data collection
    • Research Grants
    • P3: Student Design Competition
    • Research Fellowships
    • Small Business Innovation Research (SBIR)
    Contact Us to ask a question, provide feedback, or report a problem.
    Last updated April 28, 2023
    United States Environmental Protection Agency

    Discover.

    • Accessibility
    • Budget & Performance
    • Contracting
    • EPA www Web Snapshot
    • Grants
    • No FEAR Act Data
    • Plain Writing
    • Privacy
    • Privacy and Security Notice

    Connect.

    • Data.gov
    • Inspector General
    • Jobs
    • Newsroom
    • Open Government
    • Regulations.gov
    • Subscribe
    • USA.gov
    • White House

    Ask.

    • Contact EPA
    • EPA Disclaimers
    • Hotlines
    • FOIA Requests
    • Frequent Questions

    Follow.