Skip to main content
U.S. flag

An official website of the United States government

Here’s how you know

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

HTTPS

Secure .gov websites use HTTPS
A lock (LockA locked padlock) or https:// means you have safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Environmental Topics
  • Laws & Regulations
  • Report a Violation
  • About EPA
Contact Us

Grantee Research Project Results

Photodegradation of Antibiotics Used in Aquaculture

EPA Grant Number: F6B20734
Title: Photodegradation of Antibiotics Used in Aquaculture
Investigators: Guerard, Jennifer
Institution: The Ohio State University
EPA Project Officer: Packard, Benjamin H
Project Period: September 1, 2006 through September 1, 2009
Project Amount: $111,172
RFA: STAR Graduate Fellowships (2006) RFA Text |  Recipients Lists
Research Category: Fellowship - Environmental , Academic Fellowships , Fellowship - Aquatic Ecology and Ecosystems

Objective:

Antibiotics are a class of pharmaceuticals engineered to kill pathogenic bacteria, and are heavily used in aquaculture. The catfish industry is one of the largest of these industries in the U.S., and utilizes antibiotics extensively. Little is known about their fate, and presence in the environment may affect on bacteria and ecosystems in surface waters. Terramycin (oxytetracycline) and Romet-30 (sulfadimethoxine, ormetoprim) will be studied. It may be possible for degradation to non-active forms through photochemical pathways catalyzed by dissolved organic matter (DOM). DOM is ubiquitous to all natural waters, comprised of plant and algal degradation products. Studies will investigate the effect of DOM on phototransformation of these three antibiotics and examine microbial efficacy of the antibiotics.

The goal of this study is to determine the photochemical fate of three antibiotics used in catfish aquaculture, by characterizing the phototransformation of oxytetracycline, sulfadimethoxine and ormetoprim in natural waters in clean systems and with DOM. This will involve investigating effects of pH, reactive oxygen species (ROS), and photo-Fenton reactions (a pathway that forms additional ROS) on the phototransformation and microbial efficacy of these antibiotics, as well as the analysis of any photochemical byproducts produced.

Approach:

Water samples will be collected from catfish farm ponds and their receiving water. The photodegradation kinetics of each of these samples will be investigated using a solar simulator (Suntest CPS+) as well as experiments in natural sunlight. The kinetics of photodegradation of oxytetracycline, sulfadimethoxine, ormetoprim separately, a Romet-30 mixture, and all three drugs together will be studied, as both Terramycin and Romet-30 could be used at the same time. Experiments in MilliQ water and natural waters will be run, and detection done by reverse phase HPLC with a UV detector (Du et. al, 1995). Differing pH levels will be used to test the effect of pH on photodegradation, and molecular probes that can scavenge ROS will be used to assess importance of indirect photodegradation, either from production of ROS directly by DOM or by iron in photo-Fenton pathways (Southworth, 2003). Photoproducts will be characterized with an electrospray ionization mass spectrometer (ESI-MS) system. Escherichia coli will be used as a bacterial probe to test microbial efficacy of these compounds by measuring zone of inhibition of these compounds before and after photolysis.

Expected Results:

1. DOM will promote the photodegradation of these antibiotics by providing alternate pathways of phototransformation to biologically inactive substances.
2. Degradation of these antibiotics could be enhanced via side reactions such as the photo-Fenton interactions in the presence of iron.

Supplemental Keywords:

fellowship, antibiotics, dissolved organic matter, aquaculture, catfish, oxytetracycline, ormetoprim, sulfadimethoxine, photodegradation, reactive oxygen species, photo-Fenton, fate modeling,, Scientific Discipline, Water, Environmental Chemistry, Analytical Chemistry, Environmental Monitoring, Engineering, Chemistry, & Physics, antibiotics, aquaculture, chemical kinetics, photodegradation, chemical oxidation

Progress and Final Reports:

  • 2007
  • 2008
  • Final
  • Top of Page

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.

    Site Navigation

    • Grantee Research Project Results Home
    • Grantee Research Project Results Basic Search
    • Grantee Research Project Results Advanced Search
    • Grantee Research Project Results Fielded Search
    • Publication search
    • EPA Regional Search

    Related Information

    • Search Help
    • About our data collection
    • Research Grants
    • P3: Student Design Competition
    • Research Fellowships
    • Small Business Innovation Research (SBIR)
    Contact Us to ask a question, provide feedback, or report a problem.
    Last updated April 28, 2023
    United States Environmental Protection Agency

    Discover.

    • Accessibility
    • Budget & Performance
    • Contracting
    • EPA www Web Snapshot
    • Grants
    • No FEAR Act Data
    • Plain Writing
    • Privacy
    • Privacy and Security Notice

    Connect.

    • Data.gov
    • Inspector General
    • Jobs
    • Newsroom
    • Open Government
    • Regulations.gov
    • Subscribe
    • USA.gov
    • White House

    Ask.

    • Contact EPA
    • EPA Disclaimers
    • Hotlines
    • FOIA Requests
    • Frequent Questions

    Follow.