Skip to main content
U.S. flag

An official website of the United States government

Here’s how you know

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

HTTPS

Secure .gov websites use HTTPS
A lock (LockA locked padlock) or https:// means you have safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Environmental Topics
  • Laws & Regulations
  • Report a Violation
  • About EPA
Contact Us

Grantee Research Project Results

Impact of Geomorphic Structures in Stream Restorations on Hyporheic Exchange, Stream Temperature, and Stream Ecological Processes

EPA Grant Number: F6C20113
Title: Impact of Geomorphic Structures in Stream Restorations on Hyporheic Exchange, Stream Temperature, and Stream Ecological Processes
Investigators: Hester, Erich T.
Institution: University of North Carolina at Chapel Hill
EPA Project Officer: Lee, Sonja
Project Period: September 1, 2006 through August 31, 2009
Project Amount: $111,172
RFA: STAR Graduate Fellowships (2006) RFA Text |  Recipients Lists
Research Category: Academic Fellowships , Fellowship - Aquatic Ecology and Ecosystems , Fellowship - Ecology

Objective:

This research focuses on the effect of in-channel geomorphic structures that are commonly installed as part of stream restoration projects on stream hydrology and temperature. It will specifically assess the impact of these structures on the degree of surface-subsurface (hyporheic) exchange of water, as well as how the exchange induced by such structures influences temperature patterns and temperature-dependent ecological processes in streams. These results will allow engineers and regulators to better plan and execute stream restoration projects to assist mitigation of thermal impacts due to human activities such as channel manipulation, loss of streambank vegetation, and climate change.

Approach:

Both the hydrologic and thermal impacts of in-channel structures on streams will be evaluated through a combination of modeling and field experimentation. Surface and groundwater models of a hypothetical stream system with a single in-channel structure will be manipulated in a sensitivity analysis. The parameters being considered are (1) the size and type of the structure, and (2) the hydrologic and geologic setting, i.e. streambed slope, groundwater discharge rate, and depth to bedrock. A subset of the driving factors manipulated in the model will also be manipulated in a real stream, to confirm that basic trends observed in the model results are also observed in a more heterogeneous real-world setting. Finally, a literature review will be compiled of the impact of temperature on stream ecological processes.

Expected Results:

Results of the hydrologic portion of the research are already complete. They indicate that structure size and type, as well as several aspects of the hydrologic and geologic setting, significantly affect the degree of hyporheic exchange. These impacts are different depending on whether the exchange rate, the residence time of exchanged water, or the depth of exchange into the subsurface is considered. The temperature portion of the research is currently underway, with results expected to include relationships between structure size, various hydrologic or geologic setting variables, average summer or winter temperature, and average diel temperature variation of exchanged water. Finally a comprehensive summary of relationships between temperature ecological processes in streams will be generated.

Supplemental Keywords:

hyporheic exchange, stream restoration, stream temperature, geomorphic forms, hydrologic modeling, stream ecology,, RFA, Scientific Discipline, Air, Water, Ecosystem Protection/Environmental Exposure & Risk, Hydrology, Restoration, climate change, Air Pollution Effects, Aquatic Ecosystem Restoration, Environmental Engineering, Atmosphere, environmental monitoring, streams, hyporheic exchange, rivers, aquatic ecosystems, environmental rehabilitation, ecological impact

Progress and Final Reports:

  • 2007
  • 2008
  • Final
  • Top of Page

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.

    Site Navigation

    • Grantee Research Project Results Home
    • Grantee Research Project Results Basic Search
    • Grantee Research Project Results Advanced Search
    • Grantee Research Project Results Fielded Search
    • Publication search
    • EPA Regional Search

    Related Information

    • Search Help
    • About our data collection
    • Research Grants
    • P3: Student Design Competition
    • Research Fellowships
    • Small Business Innovation Research (SBIR)
    Contact Us to ask a question, provide feedback, or report a problem.
    Last updated April 28, 2023
    United States Environmental Protection Agency

    Discover.

    • Accessibility
    • Budget & Performance
    • Contracting
    • EPA www Web Snapshot
    • Grants
    • No FEAR Act Data
    • Plain Writing
    • Privacy
    • Privacy and Security Notice

    Connect.

    • Data.gov
    • Inspector General
    • Jobs
    • Newsroom
    • Open Government
    • Regulations.gov
    • Subscribe
    • USA.gov
    • White House

    Ask.

    • Contact EPA
    • EPA Disclaimers
    • Hotlines
    • FOIA Requests
    • Frequent Questions

    Follow.