Skip to main content
U.S. flag

An official website of the United States government

Here’s how you know

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

HTTPS

Secure .gov websites use HTTPS
A lock (LockA locked padlock) or https:// means you have safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Environmental Topics
  • Laws & Regulations
  • Report a Violation
  • About EPA
Contact Us

Grantee Research Project Results

Final Report: Low-Cost, Mercury-Free Electrical Switches and Relays

EPA Contract Number: EPD06044
Title: Low-Cost, Mercury-Free Electrical Switches and Relays
Investigators: Kovar, Robert F.
Small Business: Infoscitex Corporation
EPA Contact: Richards, April
Phase: I
Project Period: March 1, 2006 through August 31, 2006
Project Amount: $69,966
RFA: Small Business Innovation Research (SBIR) - Phase I (2006) RFA Text |  Recipients Lists
Research Category: SBIR - Pollution Prevention , Pollution Prevention/Sustainable Development , Small Business Innovation Research (SBIR)

Description:

In Phase I, low-cost, non-toxic, non-volatile, electrically conductive liquids were examined that were found to be suitable for use in switches and relays as replacements for mercury metal. Computational analysis was first used to identify the most promising ionic liquid (IL) candidates for synthesis, characterization, and testing. The IL component was designed to exhibit properties that would make it ideal for use in an electrical switch; namely, remaining a non-viscous liquid between -40ºC and +350ºC, being thermal-oxidatively and electrochemically stable, and exhibiting resistance to fire. Selected IL candidates were tested for electrical conductivity, negative surface meniscus formation, and environmental safety. Feasibility was demonstrated by constructing and testing a simple IL electrical switching device.

Summary/Accomplishments (Outputs/Outcomes):

Computational analysis yielded two potential ILs to examine during this Phase I—candidates “A” and “B.” Viscosity was used as a determining factor for conductivity, because it has been shown to be related in previous experiments by our partner, University of Notre Dame. Vapor pressures in these ILs are so small, they are nearly immeasurable, estimated at approximately 1E-10 bar at 300 K, making them much less volatile than mercury. During initial testing, candidate A exhibited better overall ionic conductivity than candidate B, but both were less conductive than mercury metal, which is an electronic conductor. A tilt switch was designed to accommodate that unique property of ILs, operating at low voltage (12 volts) and extremely low current to activate an LED device when contact is made. This design can prevent accidental discharge of a car battery in case the switch may be left in the “on” position. Karl Fisher titration was performed to determine water content of the liquids, and the amount of water was nearly immeasurable. Both liquids were determined to be thermally stable across a typical operating range, based on differential scanning calorimetry and thermogravimetric analysis. Contact angle testing on glass revealed that the two liquids had very similar contact angles (25.5% and 28%). Furthermore, ionically conductive additives were introduced to the liquids to increase conductivity. The final configuration of 10 percent of one ionically conductive additive in candidate A had a stable conductivity across all frequencies and was tested in the switch device. It was demonstrated that the Infoscitex switch was able to light the LED when turned in the “on” position and turn off the LED when tilted to the “off” position. An additional switch configuration of 10 percent of another ionically conductive additive in candidate A was measured to have the highest single conductivity, and it also was capable of operating the switch.

Conclusions:

ILs are low-cost, non-toxic, non-volatile, electrically conductive liquids that are suitable for use in electrical switches and relays as replacements for mercury metal, which is known to be toxic and volatile. Tests proved that, although IL switches conducted by an ionic mechanism were less electrically conductive than mercury, they offered a viable alternative material for electrical switches and relays when used in the novel Infoscitex switch design with a low-voltage, low-current LED device. Current mercury switches are toxic and heavy; unreliable ball bearing switches are heavy, with limited capability. Infoscitex IL switches can be used as a direct, drop in replacement for these current switches, and will be non-toxic, lightweight, simple in design, more reliable and efficient, and lower in cost than ball bearing switches when produced in quantity. Ionically conductive additives were successfully applied to increase the base IL’s conductivity. The Phase I results clearly indicate that feasibility was successfully demonstrated and that further refinement, scale-up, and commercialization of the IL Mercury-Free Electrical Switch should continue into Phase II.

Supplemental Keywords:

mercury replacement, mercury, pollution prevention, non-toxic electrical switch, ionic liquid, electrical switch, relay, Small Business Innovation Research, SBIR, EPA, electrically conductive liquids,, Sustainable Industry/Business, RFA, Scientific Discipline, TREATMENT/CONTROL, INTERNATIONAL COOPERATION, Technology for Sustainable Environment, pollution prevention, Sustainable Environment, Environmental Chemistry, Environmental Engineering, Technology, mercury free electrical switches, environmentally friendly green products, ecological design, environmental sustainability, environmentally benign alternative, organic ionic liquids, alternative materials, clean technologies, cleaner production

Top of Page

The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.

Site Navigation

  • Grantee Research Project Results Home
  • Grantee Research Project Results Basic Search
  • Grantee Research Project Results Advanced Search
  • Grantee Research Project Results Fielded Search
  • Publication search
  • EPA Regional Search

Related Information

  • Search Help
  • About our data collection
  • Research Grants
  • P3: Student Design Competition
  • Research Fellowships
  • Small Business Innovation Research (SBIR)
Contact Us to ask a question, provide feedback, or report a problem.
Last updated April 28, 2023
United States Environmental Protection Agency

Discover.

  • Accessibility
  • Budget & Performance
  • Contracting
  • EPA www Web Snapshot
  • Grants
  • No FEAR Act Data
  • Plain Writing
  • Privacy
  • Privacy and Security Notice

Connect.

  • Data.gov
  • Inspector General
  • Jobs
  • Newsroom
  • Open Government
  • Regulations.gov
  • Subscribe
  • USA.gov
  • White House

Ask.

  • Contact EPA
  • EPA Disclaimers
  • Hotlines
  • FOIA Requests
  • Frequent Questions

Follow.