Skip to main content
U.S. flag

An official website of the United States government

Here’s how you know

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

HTTPS

Secure .gov websites use HTTPS
A lock (LockA locked padlock) or https:// means you have safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Environmental Topics
  • Laws & Regulations
  • Report a Violation
  • About EPA
Contact Us

Grantee Research Project Results

Interactive Effects of Temperature and Oxygen on Insect Development, Fitness, and Flight Ability and the Potential Consequences of Global Climate Change Along Altitudinal Gradients

EPA Grant Number: FP916347
Title: Interactive Effects of Temperature and Oxygen on Insect Development, Fitness, and Flight Ability and the Potential Consequences of Global Climate Change Along Altitudinal Gradients
Investigators: Frazier, Melanie R.
Institution: University of Washington
EPA Project Officer: Packard, Benjamin H
Project Period: January 1, 2004 through December 31, 2006
Project Amount: $108,183
RFA: STAR Graduate Fellowships (2004) RFA Text |  Recipients Lists
Research Category: Fellowship - Entomology , Biology/Life Sciences , Academic Fellowships

Objective:

The overall goal of this research is to help elucidate the physiological and evolutionary processes that impact insects living along altitudinal gradients. The specific objectives are to determine: (1) how temperature and oxygen directly and interactively affect development, fitness, and flight ability; (2) how “beneficial acclimation” and “local adaptation” may contribute to a species’ ability to cope with high altitudes; and (3) how the antagonistic relationship between local natural selection and gene flow impact a species’ ability to persist along an environmental gradient. This research will promote a better understanding of how air density and temperature interactively affect insect locomotion and fitness. This information could facilitate the development of more accurate models to predict the impacts of global climate change, especially on high-altitude populations. In addition, this basic research ultimately may be used to help develop improved protocols for managing the genetic diversity of threatened populations.

Approach:

The fruitfly, Drosophila pseudoobscura, will be collected at multiple sites along an altitudinal transect (0 to 3,000 m) in the Sierra Nevada of California. After collecting and identifying flies, I will assay the direct and interactive effects of temperature and oxygen on development, fitness, and flight ability. This will provide an understanding of the physiological pressures of high-altitude conditions at several life stages of these insects. Second, the responses of the high- and low-altitude populations to the temperature and oxygen treatments will be compared to determine the relative contributions of adaptive and acclimatory responses to altitudinal conditions. Finally, QTL techniques will be used to see whether genes associated with enhanced high-altitude performance (e.g., better flight performance in cold and thin air, larger body size, greater wing area,) are primarily located within chromosomal inversions that characterize the genome of D. pseudoobscura.

Supplemental Keywords:

fellowship, insect flight, global climate change, oxygen, flight performance, physiology, gene flow, adaptation, high altitude,, RFA, Air, Scientific Discipline, Atmosphere, Environmental Chemistry, Air Pollution Effects, climate change, air quality, oxygen, ecosystem impacts, insect development, Global Climate Change, environmental monitoring, global warming, global change, climate variability, green house gas concentrations, adaptive technologies

Relevant Websites:

2004 STAR Graduate Fellowship Conference Poster (PDF, 1p., 111KB, about PDF)

Progress and Final Reports:

  • 2004
  • 2005
  • Final
  • Top of Page

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.

    Site Navigation

    • Grantee Research Project Results Home
    • Grantee Research Project Results Basic Search
    • Grantee Research Project Results Advanced Search
    • Grantee Research Project Results Fielded Search
    • Publication search
    • EPA Regional Search

    Related Information

    • Search Help
    • About our data collection
    • Research Grants
    • P3: Student Design Competition
    • Research Fellowships
    • Small Business Innovation Research (SBIR)
    Contact Us to ask a question, provide feedback, or report a problem.
    Last updated April 28, 2023
    United States Environmental Protection Agency

    Discover.

    • Accessibility
    • Budget & Performance
    • Contracting
    • EPA www Web Snapshot
    • Grants
    • No FEAR Act Data
    • Plain Writing
    • Privacy
    • Privacy and Security Notice

    Connect.

    • Data.gov
    • Inspector General
    • Jobs
    • Newsroom
    • Open Government
    • Regulations.gov
    • Subscribe
    • USA.gov
    • White House

    Ask.

    • Contact EPA
    • EPA Disclaimers
    • Hotlines
    • FOIA Requests
    • Frequent Questions

    Follow.