Skip to main content
U.S. flag

An official website of the United States government

Here’s how you know

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

HTTPS

Secure .gov websites use HTTPS
A lock (LockA locked padlock) or https:// means you have safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Environmental Topics
  • Laws & Regulations
  • Report a Violation
  • About EPA
Contact Us

Grantee Research Project Results

Regional Cardiac Blood Flow with Air Particle Exposure

EPA Grant Number: R831917
Title: Regional Cardiac Blood Flow with Air Particle Exposure
Investigators: Godleski, John J. , Okabe, Kazunori , Verrier, Richard
Institution: Beth Israel Deaconess Medical Center , Brigham and Women’s Hospital
EPA Project Officer: Chung, Serena
Project Period: August 1, 2004 through July 31, 2006
Project Amount: $473,924
RFA: The Role of Air Pollutants in Cardiovascular Disease (2003) RFA Text |  Recipients Lists
Research Category: Air Quality and Air Toxics , Human Health , Particulate Matter , Air

Objective:

Particulate air pollution is associated with cardiovascular morbidity and mortality in epidemiological studies. Our laboratory has pioneered the development of the ambient particle concentrator as a means to carry out inhalation toxicological assessments of responses to ambient particles in experimental animals. The most consistent and reproducible response to concentrated air particles (CAPs) from the urban air of Boston is the increase in severity of myocardial ischemia during acute coronary artery occlusion using canine models. The findings of these studies have a remarkable correspondence to the time course of myocardial infarction onset in relationship to air particulate levels in human epidemiological studies. The specific aims are: (1) to assess the mechanisms by which exposure to ambient particles exacerbates myocardial ischemia during acute coronary occlusion through assessment of regional myocardial blood flow; (2) to evaluate the role of the autonomic nervous system in regulation of regional myocardial blood flow with coronary occlusion and exposure to ambient particles.

Approach:

Our studies will employ: 1) the Harvard Ambient Particulate Concentrator (HAPC), a device that can increase ambient particle concentrations up to 30x without changing the physical or chemical characteristics of the particles; 2) a typical urban aerosol; and 3) large animal models of disease including myocardial ischemia in canines to simulate the condition of compromised humans with ischemic heart disease, the primary substrate for adult cardiac mortality. The animals will be chronically instrumented with catheters for microsphere injections and sampling as well as telemetry devices to monitor arterial blood pressure and EKG. Coronary blood flow and pressure will be assessed in animals with short-term coronary artery occlusion.

Expected Results:

This proposal offers the unique application of novel techniques to improve understanding of the mechanisms whereby ambient particulate exerts deleterious influences on the heart and circulation. Enhanced ischemia has broad implications for cardiac morbidity and mortality and therefore studies of the physiologic mechanisms involved in relationship of this outcome to ambient particulate exposure are particularly important to EPA.

Publications and Presentations:

Publications have been submitted on this project: View all 10 publications for this project

Journal Articles:

Journal Articles have been submitted on this project: View all 10 journal articles for this project

Supplemental Keywords:

air particulates, inhalation exposure, cardiovascular, ischemic heart disease, myocardial infarction, mechanisms, concentrated air particles, coronary artery perfusion, and autonomic nervous system., RFA, Scientific Discipline, Health, PHYSICAL ASPECTS, Air, Toxicology, particulate matter, Health Risk Assessment, Risk Assessments, Physical Processes, ambient aerosol, lung injury, acute cardiovascular effects, long term exposure, lung disease, morbidity, airway disease, atherosclerosis, exposure, airborne particulate matter, cardiovascular vulnerability, blood viscosity, ambient particle health effects, concentrated air particles, cardiovascular disease

Progress and Final Reports:

  • 2005 Progress Report
  • Final Report
  • Top of Page

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.

    Project Research Results

    • Final Report
    • 2005 Progress Report
    10 publications for this project
    10 journal articles for this project

    Site Navigation

    • Grantee Research Project Results Home
    • Grantee Research Project Results Basic Search
    • Grantee Research Project Results Advanced Search
    • Grantee Research Project Results Fielded Search
    • Publication search
    • EPA Regional Search

    Related Information

    • Search Help
    • About our data collection
    • Research Grants
    • P3: Student Design Competition
    • Research Fellowships
    • Small Business Innovation Research (SBIR)
    Contact Us to ask a question, provide feedback, or report a problem.
    Last updated April 28, 2023
    United States Environmental Protection Agency

    Discover.

    • Accessibility
    • Budget & Performance
    • Contracting
    • EPA www Web Snapshot
    • Grants
    • No FEAR Act Data
    • Plain Writing
    • Privacy
    • Privacy and Security Notice

    Connect.

    • Data.gov
    • Inspector General
    • Jobs
    • Newsroom
    • Open Government
    • Regulations.gov
    • Subscribe
    • USA.gov
    • White House

    Ask.

    • Contact EPA
    • EPA Disclaimers
    • Hotlines
    • FOIA Requests
    • Frequent Questions

    Follow.