Skip to main content
U.S. flag

An official website of the United States government

Here’s how you know

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

HTTPS

Secure .gov websites use HTTPS
A lock (LockA locked padlock) or https:// means you have safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Environmental Topics
  • Laws & Regulations
  • Report a Violation
  • About EPA
Contact Us

Grantee Research Project Results

Pollution Prevention and Waste Minimization in Metal Finishing (SEER)

EPA Grant Number: R827685E04
Title: Pollution Prevention and Waste Minimization in Metal Finishing (SEER)
Investigators: Mazumder, Malay K. , Engelken, Robert
Institution: University of Arkansas - Little Rock , Arkansas State University - Main Campus
EPA Project Officer: Chung, Serena
Project Period: August 1, 1999 through July 31, 2001
RFA: EPSCoR (Experimental Program to Stimulate Competitive Research) (1999) RFA Text |  Recipients Lists
Research Category: EPSCoR (The Experimental Program to Stimulate Competitive Research)

Objective:

In the use of metals, from airframes to toys, the metal surface is painted for corrosion protection and for aesthetic appearance. A typical metal finishing process consists of three steps: (1) cleaning and pretreatment with a primer; (2) coating the surface with polymer paints; and (3) curing the paint to obtain a durable coat over the primer. In many applications, the metals are painted with a conventional spray process using volatile organic compounds (VOCs) mixed with the paints. During the curing process, toxic VOCs are emitted. These VOCs are carcinogenic and the U.S. Environmental Protection Agency has strict regulations on their emission. Because of this serious environmental problem, most industries are switching to powder-coating systems. In the powder-coating process, dry powder is deposited on metal surfaces by electrostatic spraying, and the deposited powder layer is cured to form a durable film. The coating process is functionally and economically competitive with the organic solvent-based paint.

The overall objective of this research project was to prevent pollution and minimize waste in metal coating (precoat plating and powder-coating) processes. The specific objectives of this research project, which involved pollution prevention and waste minimization, were to:

1. Replace hexavalent chromium used for precoating aluminum by a process that is environmentally safe and economically competitive. The hexavalent chromium can be replaced with liquid solution deposition of molybdenum or tungsten, or by reactive organic conversion coating processes.

2. Improve Faraday penetration of charged powder in recessed areas, and expand powder-coating applications to areas where solvent-based coatings currently are used. The goal was to improve transfer efficiency of the powder to more than 90 percent to reduce powder wastes in powder-coating processes where the recycling of powder is not feasible. Improved efficiency would allow fast color change without significant waste of powder.

The long-term goal of this research project was to be nationally competitive through undergraduate and graduate research and academic programs in environmental science and engineering, peer-reviewed publications, seminars and presentations, workshops, demonstrations, and training.

Publications and Presentations:

Publications have been submitted on this project: View all 11 publications for this project

Journal Articles:

Journal Articles have been submitted on this project: View all 4 journal articles for this project

Supplemental Keywords:

pollution, pollution prevention, volatile organic compounds, VOCs, metals, waste, waste minimization, powder-coating processes, powder wastes, molybdenum oxide, MoOx, tungsten oxide, WOx, steel alloys, aluminum alloys, particle-size distribution, PSD, metal coating., Sustainable Industry/Business, Scientific Discipline, INTERNATIONAL COOPERATION, POLLUTION PREVENTION, POLLUTANTS/TOXICS, Environmental Chemistry, waste reduction, cleaner production/pollution prevention, Chemicals, Environmental Engineering, clean technology, waste minimization, hexavalent chromium, VOC removal, alternative metal finishing, cleaner production, Volatile Organic Compounds (VOCs), coating processes, electrodeposition paint coating

Progress and Final Reports:

  • 2000
  • Final Report
  • Top of Page

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.

    Project Research Results

    • Final Report
    • 2000
    11 publications for this project
    4 journal articles for this project

    Site Navigation

    • Grantee Research Project Results Home
    • Grantee Research Project Results Basic Search
    • Grantee Research Project Results Advanced Search
    • Grantee Research Project Results Fielded Search
    • Publication search
    • EPA Regional Search

    Related Information

    • Search Help
    • About our data collection
    • Research Grants
    • P3: Student Design Competition
    • Research Fellowships
    • Small Business Innovation Research (SBIR)
    Contact Us to ask a question, provide feedback, or report a problem.
    Last updated April 28, 2023
    United States Environmental Protection Agency

    Discover.

    • Accessibility
    • Budget & Performance
    • Contracting
    • EPA www Web Snapshot
    • Grants
    • No FEAR Act Data
    • Plain Writing
    • Privacy
    • Privacy and Security Notice

    Connect.

    • Data.gov
    • Inspector General
    • Jobs
    • Newsroom
    • Open Government
    • Regulations.gov
    • Subscribe
    • USA.gov
    • White House

    Ask.

    • Contact EPA
    • EPA Disclaimers
    • Hotlines
    • FOIA Requests
    • Frequent Questions

    Follow.