Skip to main content
U.S. flag

An official website of the United States government

Here’s how you know

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

HTTPS

Secure .gov websites use HTTPS
A lock (LockA locked padlock) or https:// means you have safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Environmental Topics
  • Laws & Regulations
  • Report a Violation
  • About EPA
Contact Us

Grantee Research Project Results

Optimizing Biofilter performance on hexane and gasoline contaminated air streams

EPA Grant Number: U914979
Title: Optimizing Biofilter performance on hexane and gasoline contaminated air streams
Investigators: Davidova, Yulya B.
Institution: University of California - Davis
EPA Project Officer: Packard, Benjamin H
Project Period: January 1, 1996 through July 28, 1997
Project Amount: $68,000
RFA: STAR Graduate Fellowships (1996) RFA Text |  Recipients Lists
Research Category: Fellowship - Environmental , Academic Fellowships , Safer Chemicals

Objective:

The objective of this research project is to develop and optimize biofilter performance for air streams contaminated with hexane and gasoline by performing a set of experiments designed to determine the performance of biofilter in response to temperature variations. Presently, most biofilters are monitored on a grab-sample basis, and very little information is available on process response to environmental variables. Laboratory systems operate at constant temperature, and literature is virtually empty with respect to temperature effects.

Approach:

Two factors suggested the relationship between temperature and the performance of the biofilter. First, during the experiments at University of California, Davis, a decrease of microbial population with a decrease of temperature have been observed. The decrease in population impacts the ability of the system to respond to an increase in loading of contaminant. Second, I found that compounds comprising the gasoline are removed sequentially in the biofilter. The more volatile compounds (e.g., pentane and hexane) are removed later in the column compared to more soluble materials (e.g., benzene and toluene). At lower temperatures, the less soluble, more volatile compounds are likely to pass through unremoved, unless design and operation accommodations are made. Biofilters are attractive because of low capital and operating costs. However, if process performance is highly temperature sensitive, monitoring restriction may be appropriate.

Expected Results:

The experiments that I will conduct will determine: (1) the effect of temperature on overall emissions from biofilters treating mixtures such as gasoline; (2) the effect of diurnal temperature variation on emissions; and (3) the necessity of diurnal monitoring for biofilters. Biofiltration is a technology in its infancy, and these experiments should define an important parameter for both the particular case of gasoline vapor treatment and for complex mixtures in general.

Supplemental Keywords:

fellowship, biofilter, biofilter performance, hexane, gasoline, temperature, temperature effects, emissions, gasoline vapor treatment., RFA, Scientific Discipline, Air, Toxics, Waste, Sustainable Industry/Business, Air Pollution Control, air toxics, cleaner production/pollution prevention, Sustainable Environment, Chemistry, VOCs, Technology for Sustainable Environment, Hazardous Waste, Chemistry and Materials Science, Engineering, Environmental Engineering, Engineering, Chemistry, & Physics, Hazardous, emission control strategies, hazardous waste treatment, Superfund site remediation, biofiltration, Hexane, emission control technologies, Superfund sites, biofilter, VOC removal, BTEX, emission controls, remediation, Volatile Organic Compounds (VOCs), biofiltration systems, air emissions

Progress and Final Reports:

  • 1996
  • Final
  • Top of Page

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.

    Site Navigation

    • Grantee Research Project Results Home
    • Grantee Research Project Results Basic Search
    • Grantee Research Project Results Advanced Search
    • Grantee Research Project Results Fielded Search
    • Publication search
    • EPA Regional Search

    Related Information

    • Search Help
    • About our data collection
    • Research Grants
    • P3: Student Design Competition
    • Research Fellowships
    • Small Business Innovation Research (SBIR)
    Contact Us to ask a question, provide feedback, or report a problem.
    Last updated April 28, 2023
    United States Environmental Protection Agency

    Discover.

    • Accessibility
    • Budget & Performance
    • Contracting
    • EPA www Web Snapshot
    • Grants
    • No FEAR Act Data
    • Plain Writing
    • Privacy
    • Privacy and Security Notice

    Connect.

    • Data.gov
    • Inspector General
    • Jobs
    • Newsroom
    • Open Government
    • Regulations.gov
    • Subscribe
    • USA.gov
    • White House

    Ask.

    • Contact EPA
    • EPA Disclaimers
    • Hotlines
    • FOIA Requests
    • Frequent Questions

    Follow.