Skip to main content
U.S. flag

An official website of the United States government

Here’s how you know

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

HTTPS

Secure .gov websites use HTTPS
A lock (LockA locked padlock) or https:// means you have safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Environmental Topics
  • Laws & Regulations
  • Report a Violation
  • About EPA
Contact Us

Grantee Research Project Results

Affordable, Large-Scale Manufacturing of High Surface Area Iron Powder

EPA Contract Number: EPD04059
Title: Affordable, Large-Scale Manufacturing of High Surface Area Iron Powder
Investigators: Freim, John
Small Business: OnMaterials LLC
EPA Contact: Richards, April
Phase: II
Project Period: April 1, 2004 through June 30, 2005
Project Amount: $225,000
RFA: Small Business Innovation Research (SBIR) - Phase II (2004) Recipients Lists
Research Category: Small Business Innovation Research (SBIR) , SBIR - Waste , Hazardous Waste/Remediation

Description:

Contaminated groundwater presents a widespread environmental challenge in America today. Existing treatment methods are imperfect in that they are either slow, expensive, or unable to treat the full spectrum of groundwater contaminants. Prior work has demonstrated that zero valent iron can detoxify groundwater contaminated with halogenated hydrocarbons and other toxic chemicals. The beneficial chemical reactions occur on the particle surface so an ideal, kinetically active powder will offer a large surface area per unit mass. Traditional iron materials are inexpensive but contain coarse particles and provide a low surface area of only 0.1 to 0.4 m2/g of powder. Accordingly, these powders react slowly and often are unable to treat the full spectrum of groundwater contaminants. Recently, nanocrystalline iron powders with a surface area of greater than 10 m2/g have been marketed, but these materials either are prohibitively expensive, not available in large quantities, or contain a significant amount of nonreactive iron oxide.

The goal of this research project is to apply OnMaterials' expertise in powder synthesis and processing to produce a lower-cost, high-surface area, zero valent iron for the remediation marketplace. A series of experiments were performed that identified materials and processing conditions to produce iron with a surface area 10-20 times greater than existing low-cost powders. The OnMaterials synthesis process also is capable of producing powder containing embedded secondary metals. These multimetallic materials are beneficial because they catalyze the production of hydrogen gas that increases the reaction rate. When the benefits of the multimetallic system were coupled with the high surface area, OnMaterials' powder provided very rapid reaction kinetics. When a small amount of powder was added to an aqueous tricholorethylene solution, OnMaterials powder accomplished the removal of all chlorinated compounds in less than 1 day. In contrast, commercially available iron powder showed negligible reactivity after 1 week in the same solution.

The highly reactive powder will allow for the end user to use a lesser powder quantity to remediate a given amount of contaminant with a concurrent reduction in application costs. The high reactivity also will allow for the treatment of reduction-resistant groundwater contaminants. When successfully developed, scaled, and commercialized, the product can positively impact the $5 billion per year remediation marketplace, not only for chlorinated solvents, but also for other toxic chemicals, including chromates, arsenic, and perchlorate.

Supplemental Keywords:

small business, SBIR, contaminated groundwater, high surface area iron powder, zero valent iron, iron oxide, remediation, halogenated hydrocarbons, tricholorethylene, chlorinated solvents, toxic chemicals., Scientific Discipline, Waste, POLLUTANTS/TOXICS, Environmental Chemistry, Chemicals, Groundwater remediation, Environmental Engineering, iron powder, Chromium, perchlorate, zero valent iron, treatment, contaminated groundwater, groundwater contamination, aquifer remediation, arsenic

Progress and Final Reports:

  • Final

  • SBIR Phase I:

    Affordable, Large-Scale Manufacturing of High Surface Area Iron Powder  | Final Report

    Top of Page

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.

    Project Research Results

    • Final
    • SBIR Phase I | Final Report

    Site Navigation

    • Grantee Research Project Results Home
    • Grantee Research Project Results Basic Search
    • Grantee Research Project Results Advanced Search
    • Grantee Research Project Results Fielded Search
    • Publication search
    • EPA Regional Search

    Related Information

    • Search Help
    • About our data collection
    • Research Grants
    • P3: Student Design Competition
    • Research Fellowships
    • Small Business Innovation Research (SBIR)
    Contact Us to ask a question, provide feedback, or report a problem.
    Last updated April 28, 2023
    United States Environmental Protection Agency

    Discover.

    • Accessibility
    • Budget & Performance
    • Contracting
    • EPA www Web Snapshot
    • Grants
    • No FEAR Act Data
    • Plain Writing
    • Privacy
    • Privacy and Security Notice

    Connect.

    • Data.gov
    • Inspector General
    • Jobs
    • Newsroom
    • Open Government
    • Regulations.gov
    • Subscribe
    • USA.gov
    • White House

    Ask.

    • Contact EPA
    • EPA Disclaimers
    • Hotlines
    • FOIA Requests
    • Frequent Questions

    Follow.