Skip to main content
U.S. flag

An official website of the United States government

Here’s how you know

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

HTTPS

Secure .gov websites use HTTPS
A lock (LockA locked padlock) or https:// means you have safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Environmental Topics
  • Laws & Regulations
  • Report a Violation
  • About EPA
Contact Us

Grantee Research Project Results

The Contribution of Chlorine Radicals to Tropospheric Ozone Formation in Southeastern Texas

EPA Grant Number: U915887
Title: The Contribution of Chlorine Radicals to Tropospheric Ozone Formation in Southeastern Texas
Investigators: Tanaka, Paul L.
Institution: The University of Texas at Austin
EPA Project Officer: Lee, Sonja
Project Period: January 1, 2001 through May 1, 2003
Project Amount: $82,410
RFA: STAR Graduate Fellowships (2001) RFA Text |  Recipients Lists
Research Category: Fellowship - Atmospheric Sciences , Academic Fellowships , Air Quality and Air Toxics

Objective:

Ground-level ozone is produced by well-understood reactions between volatile organic compounds (VOCs) and hydroxyl radicals in the presence of nitrogen oxides (NOx). It has been suggested that chlorine radicals (Cl·) also could contribute to ground-level ozone formation. Previous experiments involving purified air supported this hypothesis. However, experimental verification of this phenomenon in ambient air had never been observed. The objective of this research project is to investigate the ability of Cl· to enhance ground-level ozone formation under the following conditions: (1) the release of Cl· precursor into captive ambient air; (2) the release of Cl· simultaneously with other ozone precursors (i.e., VOCs and NOx) into captive ambient air; and (3) the release of Cl· into captive aged air masses. These conditions were chosen to simulate conditions that the Cl· precursor would encounter near colocated sources of VOC and NOx.

Approach:

To assess the regional impact of chlorine radicals on ozone formation in Houston, TX, the Carbon Bond IV chemical mechanism was modified to include 13 reactions involving chlorine radicals. The reactions included the photolysis of Cl· precursors, reactions between Cl· and VOCs, and reactions between ozone and Cl·. The VOC reactions include the reactions of Cl· with isoprene and 1,3-butadiene that yield unique reaction products (i.e., marker species). This modified chemical mechanism then was employed within a numerical model that accounted for chemical as well as physical processes (regional photochemical model). The Comprehensive Air Quality Model with Extensions was used to predict the impact of chlorine radicals on regional ozone formation in and around Houston, TX.

When the modified chemical mechanism (that included chlorine-radical reactions) was employed, ozone levels were enhanced by up to 16 ppb in the Houston area, with the greatest enhancement predicted for the morning hours after sunrise. Methane may be activated by chlorine radicals to contribute significantly to the predicted ozone enhancement in the Houston area. Such behavior suggests that the impact of chlorine radicals would be proportional to the availability of Cl· precursor. The addition of chlorine resulted in the rapid enhancement of ozone formation (most significantly [>75 ppb/hour] during morning hours when photochemical reactivity is otherwise low). In urban areas with anthropogenic sources of Cl· precursors, Cl· reactions may need to be considered to more accurately predict ozone formation.

Supplemental Keywords:

fellowship, chlorine, chlorine radical, volatile organic compounds, VOCs, nitrogen oxide, NOx, air pollution, ozone, Texas, TX., RFA, Scientific Discipline, Air, Geographic Area, State, tropospheric ozone, Atmospheric Sciences, Environmental Monitoring, nitrous oxide, atmospheric monitoring, air quality model, VOCs, ozone production, ambient ozone data

Progress and Final Reports:

  • 2001
  • 2002
  • Final
  • Top of Page

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.

    Site Navigation

    • Grantee Research Project Results Home
    • Grantee Research Project Results Basic Search
    • Grantee Research Project Results Advanced Search
    • Grantee Research Project Results Fielded Search
    • Publication search
    • EPA Regional Search

    Related Information

    • Search Help
    • About our data collection
    • Research Grants
    • P3: Student Design Competition
    • Research Fellowships
    • Small Business Innovation Research (SBIR)
    Contact Us to ask a question, provide feedback, or report a problem.
    Last updated April 28, 2023
    United States Environmental Protection Agency

    Discover.

    • Accessibility
    • Budget & Performance
    • Contracting
    • EPA www Web Snapshot
    • Grants
    • No FEAR Act Data
    • Plain Writing
    • Privacy
    • Privacy and Security Notice

    Connect.

    • Data.gov
    • Inspector General
    • Jobs
    • Newsroom
    • Open Government
    • Regulations.gov
    • Subscribe
    • USA.gov
    • White House

    Ask.

    • Contact EPA
    • EPA Disclaimers
    • Hotlines
    • FOIA Requests
    • Frequent Questions

    Follow.