Skip to main content
U.S. flag

An official website of the United States government

Here’s how you know

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

HTTPS

Secure .gov websites use HTTPS
A lock (LockA locked padlock) or https:// means you have safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Environmental Topics
  • Laws & Regulations
  • Report a Violation
  • About EPA
Contact Us

Grantee Research Project Results

Ecological Physiology of the Black Band Disease Cyanobacterium Phormidium corallyticum: Dark Metabolic Capabilities

EPA Grant Number: U916224
Title: Ecological Physiology of the Black Band Disease Cyanobacterium Phormidium corallyticum: Dark Metabolic Capabilities
Investigators: Ragoonath, Davecia N.
Institution: Florida International University
EPA Project Officer: Hahn, Intaek
Project Period: January 1, 2003 through June 20, 2006
Project Amount: $120,740
RFA: Minority Academic Institutions (MAI) Fellowships for Graduate Environmental Study (2003) RFA Text |  Recipients Lists
Research Category: Biology/Life Sciences , Fellowship - Natural and Life Sciences , Academic Fellowships

Objective:

The objectives of this research project are to: (1) investigate the physiological processes of photoheterotrophy, fermentation, dark aerobic respiration, and potential anaerobic respiration using a laboratory culture of Phormidium corallyticum; and (2) expand our knowledge of the overall etiology and ecology of P. corallyticum and define its role in black band disease (BBD). BBD is a microbial consortium that commonly infects scleractinian and gorgonian corals, degrading coral tissue and leaving bare coral skeleton. It is dominated by the gliding, filamentous cyanobacterium P. corallyticum and includes sulfate-reducing and sulfide-oxidizing bacteria. Although P. corallyticum's photoautotrophic physiological capabilities have been established, little is known of its dark or photoheterotrophic metabolism.

Approach:

Analyses of growth rates using different organic carbon compounds, identification of fermentation end products, and potential use of alternate electron acceptors will determine heterotrophic capabilities of this cyanobacterium. In addition, this species will be sequenced and subjected to phylogenetic analysis. Heterotrophic growth and survival under aerobic and anaerobic light and dark conditions were measured and compared with photoautotrophic growth. The highest growth rate was obtained via photoautotrophy. The next highest growth rate was via (dark) anaerobic heterotrophy, and the lowest growth (and limited survival) occurred via (dark) aerobic heterotrophy.

Supplemental Keywords:

fellowship, Phormidium corallyticum, black band disease, BBD, physiology, metabolic.

Progress and Final Reports:

  • 2003
  • 2004
  • 2005
  • Final
  • Top of Page

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.

    Site Navigation

    • Grantee Research Project Results Home
    • Grantee Research Project Results Basic Search
    • Grantee Research Project Results Advanced Search
    • Grantee Research Project Results Fielded Search
    • Publication search
    • EPA Regional Search

    Related Information

    • Search Help
    • About our data collection
    • Research Grants
    • P3: Student Design Competition
    • Research Fellowships
    • Small Business Innovation Research (SBIR)
    Contact Us to ask a question, provide feedback, or report a problem.
    Last updated April 28, 2023
    United States Environmental Protection Agency

    Discover.

    • Accessibility
    • Budget & Performance
    • Contracting
    • EPA www Web Snapshot
    • Grants
    • No FEAR Act Data
    • Plain Writing
    • Privacy
    • Privacy and Security Notice

    Connect.

    • Data.gov
    • Inspector General
    • Jobs
    • Newsroom
    • Open Government
    • Regulations.gov
    • Subscribe
    • USA.gov
    • White House

    Ask.

    • Contact EPA
    • EPA Disclaimers
    • Hotlines
    • FOIA Requests
    • Frequent Questions

    Follow.