Skip to main content
U.S. flag

An official website of the United States government

Here’s how you know

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

HTTPS

Secure .gov websites use HTTPS
A lock (LockA locked padlock) or https:// means you have safely connected to the .gov website. Share sensitive information only on official, secure websites.

    • Environmental Topics
    • Air
    • Bed Bugs
    • Chemicals and Toxics
    • Climate Change
    • Emergency Response
    • Environmental Information by Location
    • Environmental Justice
    • Greener Living
    • Health
    • Land, Waste, and Cleanup
    • Lead
    • Mold
    • Pesticides
    • Radon
    • Science Topics
    • Water Topics
    • A-Z Topic Index
    • Laws & Regulations
    • By Business Sector
    • By Topic
    • Compliance
    • Enforcement
    • Guidance
    • Laws and Executive Orders
    • Regulations
    • Report a Violation
    • Environmental Violations
    • Fraud, Waste or Abuse
    • About EPA
    • EPA Administrator
    • Organization Chart
    • Staff Directory
    • Planning, Budget, and Results
    • Jobs and Internships
    • Headquarters Offices
    • Regional Offices
    • Lab and Research Centers
Contact Us

Grantee Research Project Results

Supercritical Fluid Extraction of Actinide Surrogates fFrom Environmental Matrices

EPA Grant Number: U914940
Title: Supercritical Fluid Extraction of Actinide Surrogates fFrom Environmental Matrices
Investigators: Anderson, Wendy A.
Institution: University of Colorado at Boulder
EPA Project Officer: Packard, Benjamin H
Project Period: January 1, 1996 through January 1, 1999
Project Amount: $102,000
RFA: STAR Graduate Fellowships (1996) RFA Text |  Recipients Lists
Research Category: Academic Fellowships , Safer Chemicals , Fellowship - Analytical Chemistry

Objective:

The objective of this research is to explore the use of chelating agents in combination with supercritical CO2 extraction to remove actinide surrogates from contaminated soils, sediments, aqueous systems, and wastes generated in the nuclear industry.

Supercritical fluid extraction has gained popularity as a separation technique because it avoids the use of hazardous solvents and reduces the volume of material for waste disposal. Moreover, this method is appropriate for the treatment of mixed radioactive and hazardous organic wastes that cannot be disposed under current regulations. In addition to dissolving chelated metals, the solvating power of CO2 can be "tuned" as a function of temperature and pressure to dissolve many classes of hazardous organic compounds.

Approach:

Extraction efficiency depends on the solubility of both the chelating agent and the metal chelate in supercritical CO2. By measuring the solubility of various metal chelates in CO2, we can determine which chelating agents will be the most efficient for extraction studies, and can use the solubility information to optimize future extraction parameters. We have developed a method to determine the solubility of highly colored metal chelates in supercritical CO2 by near infrared spectroscopy. The beta-diketone ligand, 2,2,7-trimethyl-3,5-octandione, H(tod), shows promise as an inexpensive and effective chelating agent for supercritical fluid extraction. Solubility results for Fe(tod)3 show that this metal chelate is within an order of magnitude as soluble as highly fluorinated metal chelates. Currently extraction studies are being performed on surrogate waste samples to optimize the extraction efficiency of the system in terms of pressure, temperature, mixing, pH, and solvent modifiers. Additional experiments will analyze the performance of a two-step extraction process to separate mixed radioactive and hazardous wastes. In this method, an initial extraction will be performed with neat supercritical CO2 to separate hazardous organic compounds. Then, a batch of supercritical CO2-containing chelating agents will be used to extract metals from the waste sample.

Supplemental Keywords:

fellowship, chelating agents, supercritical CO2, contaminated soils, sediments, wastes, aqueous systems, metal chelates, near infrared spectroscopy, NIR, hazardous wastes, metals, organic compounds., RFA, Scientific Discipline, Sustainable Industry/Business, POLLUTION PREVENTION, Chemical Engineering, cleaner production/pollution prevention, waste reduction, Environmental Chemistry, Sustainable Environment, Technology for Sustainable Environment, New/Innovative technologies, supercritical carbon dioxide (SCCO2) technology, hazardous waste remediation, environmentally conscious manufacturing, environmentally friendly technology, waste minimization, co-solvents, organic residues, supercritical carbon dioxide, industrial lubricants, engineering, subcritical CO2, actinide surrogate

Progress and Final Reports:

  • 1996
  • 1997
  • Final
  • Site Navigation

    • Grantee Research Project Results Home
    • Grantee Research Project Results Basic Search
    • Grantee Research Project Results Advanced Search
    • Grantee Research Project Results Fielded Search
    • Publication search
    • EPA Regional Search

    Related Information

    • Search Help
    • About our data collection
    • Research Grants
    • P3: Student Design Competition
    • Research Fellowships
    • Small Business Innovation Research (SBIR)

    Contact Us to ask a question, provide feedback, or report a problem.

    United States Environmental Protection Agency

    Discover.

    • Accessibility
    • Budget & Performance
    • Contracting
    • EPA www Web Snapshot
    • Grants
    • No FEAR Act Data
    • Plain Writing
    • Privacy
    • Privacy and Security Notice

    Connect.

    • Data.gov
    • Inspector General
    • Jobs
    • Newsroom
    • Open Government
    • Regulations.gov
    • Subscribe
    • USA.gov
    • White House

    Ask.

    • Contact EPA
    • EPA Disclaimers
    • Hotlines
    • FOIA Requests
    • Frequent Questions

    Follow.

    Last updated on October 20, 2022