Skip to main content
U.S. flag

An official website of the United States government

Here’s how you know

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

HTTPS

Secure .gov websites use HTTPS
A lock (LockA locked padlock) or https:// means you have safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Environmental Topics
  • Laws & Regulations
  • Report a Violation
  • About EPA
Contact Us

Grantee Research Project Results

Air Pollution and Human Vascular Dysfunction: Mechanism and Mediators

EPA Grant Number: CR830837
Title: Air Pollution and Human Vascular Dysfunction: Mechanism and Mediators
Investigators: Brook, Robert D. , Keeler, Gerald J. , Brook, Jeffrey R. , Dvonch, Joseph T. , Silverman, Frances , Vincent, Renaud , Rajagopalan, Sanjay
Institution: University of Michigan , University of Toronto
Current Institution: University of Michigan , Health Canada - Ottawa , University of Toronto
EPA Project Officer: Chung, Serena
Project Period: May 1, 2003 through April 30, 2006 (Extended to April 30, 2008)
Project Amount: $1,050,000
RFA: Airborne Particulate Matter Health Effects: Cardiovascular Mechanisms (2002) RFA Text |  Recipients Lists
Research Category: Particulate Matter , Human Health , Air

Objective:

Short-term exposure to concentrated ambient fine particulate air pollution (PM2.5) + ozone (O3) causes acute conduit artery vasoconstriction. This abrupt alteration in vascular tone is likely an important biological mechanism linking air pollution exposure with acute cardiovascular events. The objectives of this current proposal are threefold. First, to elucidate the underlying patho-physiological mechanisms linking air pollution with impaired arterial reactivity; second, to determine the significance of the air pollution-mediated arterial vasoconstriction on systemic hemodynamics and blood pressure; and third, to identify the specific air pollution components responsible for the detrimental impact on human vascular function.

Approach:

We plan to undertake two separate double-blind, cross-over studies using controlled human exposures to concentrated ambient PM2.5 (CAP) ± O3. A new mobile human exposure facility (AirCARE 1) will be employed at the University of Michigan to focus on the underlying biological mechanisms. AirCARE 1 is the result of a joint collaboration between the University of Michigan and Michigan State University. The effects of pre-exposure treatments with anti-oxidants and endothelin receptor blockade on the vascular responses to air pollution exposure will be investigated compared to placebo. The exposure facility located at the University of Toronto will be used to investigate the importance of CAP versus O, as well as specific particle constituents, in the etiology of the vascular dysfunction following air pollution exposure.

Expected Results:

It is anticipated that CAP (PM2.5) will be primarily implicated in mediating the adverse effects on the vasculature and that both pre-exposure treatments with anti-oxidants and ET-blockade will prevent or significantly blunt the air pollution-mediated vasoconstriction. The results of this study will provide important insights into the biological mechanism linking air pollution with cardiovascular disease, supporting a crucial role of oxidative stress and heightened vascular expression of ETs.

Publications and Presentations:

Publications have been submitted on this project: View all 5 publications for this project

Journal Articles:

Journal Articles have been submitted on this project: View all 3 journal articles for this project

Supplemental Keywords:

concentrated ambient air, ozone, health effects, endothelium., Health, RFA, Air, Scientific Discipline, Health Risk Assessment, Risk Assessments, particulate matter, Biochemistry, airborne particulate matter, human exposure, cardiovascular vulnerability, particulates, ozone, vascular dysfunction, atmospheric particulate matter, air pollution, cardiovascular disease, human health risk, human health effects, airway disease

Progress and Final Reports:

  • 2003 Progress Report
  • 2004 Progress Report
  • 2005 Progress Report
  • 2006 Progress Report
  • Final Report
  • Top of Page

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.

    Project Research Results

    • Final Report
    • 2006 Progress Report
    • 2005 Progress Report
    • 2004 Progress Report
    • 2003 Progress Report
    5 publications for this project
    3 journal articles for this project

    Site Navigation

    • Grantee Research Project Results Home
    • Grantee Research Project Results Basic Search
    • Grantee Research Project Results Advanced Search
    • Grantee Research Project Results Fielded Search
    • Publication search
    • EPA Regional Search

    Related Information

    • Search Help
    • About our data collection
    • Research Grants
    • P3: Student Design Competition
    • Research Fellowships
    • Small Business Innovation Research (SBIR)
    Contact Us to ask a question, provide feedback, or report a problem.
    Last updated April 28, 2023
    United States Environmental Protection Agency

    Discover.

    • Accessibility
    • Budget & Performance
    • Contracting
    • EPA www Web Snapshot
    • Grants
    • No FEAR Act Data
    • Plain Writing
    • Privacy
    • Privacy and Security Notice

    Connect.

    • Data.gov
    • Inspector General
    • Jobs
    • Newsroom
    • Open Government
    • Regulations.gov
    • Subscribe
    • USA.gov
    • White House

    Ask.

    • Contact EPA
    • EPA Disclaimers
    • Hotlines
    • FOIA Requests
    • Frequent Questions

    Follow.