Skip to main content
U.S. flag

An official website of the United States government

Here’s how you know

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

HTTPS

Secure .gov websites use HTTPS
A lock (LockA locked padlock) or https:// means you have safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Environmental Topics
  • Laws & Regulations
  • Report a Violation
  • About EPA
Contact Us

Grantee Research Project Results

Colloidal Stability in Aquatic Systems: The Roles of Calcium and Natural Organic Matter

EPA Grant Number: U915560
Title: Colloidal Stability in Aquatic Systems: The Roles of Calcium and Natural Organic Matter
Investigators: Penisson, Adrian C.
Institution: The Johns Hopkins University
EPA Project Officer: Packard, Benjamin H
Project Period: August 1, 1999 through August 1, 2002
Project Amount: $102,000
RFA: STAR Graduate Fellowships (1999) RFA Text |  Recipients Lists
Research Category: Academic Fellowships , Safer Chemicals , Fellowship - Engineering

Objective:

Colloids are ubiquitous in natural and technological aquatic systems and can significantly affect environmental quality in these systems. Most aquatic colloids are at least partially coated with natural organic matter (NOM). The objective of this research project is to provide the first comprehensive study of the effects of divalent cations (calcium, in particular) on the adsorption of NOM by aquatic colloids and the resulting effects on colloidal stability. The specific objective is to test the hypothesis that divalent cations affect colloidal stability through specific interactions with colloids and their adsorbed NOM layers that alter the amount and conformation of adsorbed NOM and the electrostatic properties of the colloids and NOM.

Approach:

This study will be the first to integrate measurements of NOM adsorbed amount, NOM adsorbed layer thickness, electrophoretic mobility, and coagulation kinetics (colloidal stability) in the presence of calcium for positively and negatively charged metal oxide colloids. Because of the complex nature of natural aquatic colloids and NOM, an approach involving model systems is required. Judicious selection of model particles, model organic matter, and solution conditions (pH, ionic strength) will allow insight into the relative importance of hydrophobic effects, macromolecular effects, electrostatic effects, and specific chemical interactions among calcium, oxide surfaces, and NOM to be obtained. Potentiometric titrations will be used to determine the charge of the model particles and model NOM as functions of pH, ionic strength, and calcium concentration. NOM adsorption isotherms will be obtained in batch adsorption experiments by measuring the difference in the concentration of dissolved NOM before and after adsorption. The thickness of NOM adsorbed layers will be determined through photon correlation spectroscopy (PCS). The electrophoretic mobilities of the particles both before and after adsorption of NOM will be obtained using Doppler-shift electrophoresis. Coagulation of model colloids will be studied with both single-angle and multiple-angle static light scattering (SLS). These experimental results will be used to extend recently developed models that describe the amount and conformation of adsorbed NOM to systems that contain divalent cations.

Expected Results:

This research will lead to a greater understanding of the effects of calcium and NOM on colloidal stability, and therefore, better prediction of the behavior of pollutants in natural aquatic environments and the development of improved water treatment processes.

Supplemental Keywords:

adsorption, natural organic matter, NOM, calcium, divalent cations, colloids, colloidal stability., Scientific Discipline, Water, Environmental Chemistry, Engineering, Environmental Engineering, Engineering, Chemistry, & Physics, calcium, natural organic matter, divalent cations, electrophoretic mobility instrument, aquatic resources, colloid, static light scattering

Progress and Final Reports:

  • 2000
  • 2001
  • Final
  • Top of Page

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.

    Site Navigation

    • Grantee Research Project Results Home
    • Grantee Research Project Results Basic Search
    • Grantee Research Project Results Advanced Search
    • Grantee Research Project Results Fielded Search
    • Publication search
    • EPA Regional Search

    Related Information

    • Search Help
    • About our data collection
    • Research Grants
    • P3: Student Design Competition
    • Research Fellowships
    • Small Business Innovation Research (SBIR)
    Contact Us to ask a question, provide feedback, or report a problem.
    Last updated April 28, 2023
    United States Environmental Protection Agency

    Discover.

    • Accessibility
    • Budget & Performance
    • Contracting
    • EPA www Web Snapshot
    • Grants
    • No FEAR Act Data
    • Plain Writing
    • Privacy
    • Privacy and Security Notice

    Connect.

    • Data.gov
    • Inspector General
    • Jobs
    • Newsroom
    • Open Government
    • Regulations.gov
    • Subscribe
    • USA.gov
    • White House

    Ask.

    • Contact EPA
    • EPA Disclaimers
    • Hotlines
    • FOIA Requests
    • Frequent Questions

    Follow.