Skip to main content
U.S. flag

An official website of the United States government

Here’s how you know

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

HTTPS

Secure .gov websites use HTTPS
A lock (LockA locked padlock) or https:// means you have safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Environmental Topics
  • Laws & Regulations
  • Report a Violation
  • About EPA
Contact Us

Grantee Research Project Results

A Bayesian Probability Network Approach To Predictive Modeling in Support of Environmental Decision Making

EPA Grant Number: U915590
Title: A Bayesian Probability Network Approach To Predictive Modeling in Support of Environmental Decision Making
Investigators: Borsuk, Mark E.
Institution: Duke University
EPA Project Officer: Lee, Sonja
Project Period: August 1, 1999 through August 1, 2002
Project Amount: $102,000
RFA: STAR Graduate Fellowships (1999) RFA Text |  Recipients Lists
Research Category: Academic Fellowships , Environmental Justice , Fellowship - Environmental

Objective:

The objective of this research project is to demonstrate that probability network models represent an improved approach to predictive modeling used for environmental management.

Approach:

A probability network model is being developed and applied to the problem of eutrophication in the Neuse River, North Carolina. Also called a Bayesian probability network, or a ?Bayes net,? this model consists of the set of variables of interest in the system being modeled as well as a set of assertions concerning the probabilistic relationships among the variables. These relationships are quantified using historical data, models, and expert judgment. Probabilistic predictions of model endpoints are then made that are based on the entire set of conditional probabilities that have been assessed for each system variable. Not only does this network structure provide a more integrated approach to uncertainty analysis, but it also allows easy updating of prediction and inference when observations of model variables are made. This capability is particularly important when applied to a natural system in which additional monitoring is likely to occur concurrent with the modeling effort.

Expected Results:

This study will determine if probability network models are more effective than predictive modeling for environmental management. The probability network method could remedy many of the traditional shortcomings of science used for decisionmaking.

Supplemental Keywords:

integrated modeling, probabilistic prediction, stakeholder involvement, publicly meaningful endpoints, water quality modeling, Bayesian inference., RFA, Scientific Discipline, Economic, Social, & Behavioral Science Research Program, decision-making, Environmental Statistics, Social Science, Economics & Decision Making, Bayesian approach, decision analysis, decision making, environmental decision making, integrated modeling, Bayesian method, probability network models, stakeholder

Progress and Final Reports:

  • 2000
  • 2001
  • Final
  • Top of Page

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.

    Site Navigation

    • Grantee Research Project Results Home
    • Grantee Research Project Results Basic Search
    • Grantee Research Project Results Advanced Search
    • Grantee Research Project Results Fielded Search
    • Publication search
    • EPA Regional Search

    Related Information

    • Search Help
    • About our data collection
    • Research Grants
    • P3: Student Design Competition
    • Research Fellowships
    • Small Business Innovation Research (SBIR)
    Contact Us to ask a question, provide feedback, or report a problem.
    Last updated April 28, 2023
    United States Environmental Protection Agency

    Discover.

    • Accessibility
    • Budget & Performance
    • Contracting
    • EPA www Web Snapshot
    • Grants
    • No FEAR Act Data
    • Plain Writing
    • Privacy
    • Privacy and Security Notice

    Connect.

    • Data.gov
    • Inspector General
    • Jobs
    • Newsroom
    • Open Government
    • Regulations.gov
    • Subscribe
    • USA.gov
    • White House

    Ask.

    • Contact EPA
    • EPA Disclaimers
    • Hotlines
    • FOIA Requests
    • Frequent Questions

    Follow.