Skip to main content
U.S. flag

An official website of the United States government

Here’s how you know

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

HTTPS

Secure .gov websites use HTTPS
A lock (LockA locked padlock) or https:// means you have safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Environmental Topics
  • Laws & Regulations
  • Report a Violation
  • About EPA
Contact Us

Grantee Research Project Results

The Microbial and Transformations of Arsenic in Anoxic Waters

EPA Grant Number: R823222
Title: The Microbial and Transformations of Arsenic in Anoxic Waters
Investigators: Morel, Francois M.
Institution: Princeton University
EPA Project Officer: Hahn, Intaek
Project Period: October 1, 1995 through September 30, 1998
Project Amount: $356,082
RFA: Exploratory Research - Environmental Biology (1995) RFA Text |  Recipients Lists
Research Category: Aquatic Ecosystems , Biology/Life Sciences , Human Health

Description:

The goal of this project is to understand the role of microorganisms in arsenic cycling in contaminated freshwater systems. Arsenic is an important pollutant, one whose toxicity and potential carcinogenicity are responsible for the "high ranking" of several superfund sites. Yet for all its importance, we are still relatively ignorant of the processes that control arsenic chemistry and mobility in the environment. In particular, we know little of the processes responsible for the dissolution and precipitation of arsenic in anoxic waters and sediments where arsenic is most often found. The specific goals of this proposal are to elucidate two particular pathways that are important for the mobility of arsenic in anoxic systems: 1) the reduction (and dissolution) of As(V) to As(III); and 2) the precipitation of arsenic-sulfides.

The project is based on two related hypotheses that posit that bacteria are responsible for arsenic transformations in the environment. The first hypothesis is that arsenate (AsO43-) is used as an electron acceptor by some bacteria (dissimilatory As(V) reduction) and thus reduced to the more mobile arsenite (AsO33-) form in anoxic waters. According to the second hypothesis, some of these bacteria also catalyze the precipitation of arsenic sulfides, chiefly orpiment (As2S3). Both of these hypotheses are at variance with current wisdom since arsenic's toxicity makes it a seemingly improbable bacterial substrate and orpiment is not considered a typical sedimentary constituent.

The results of this project will further our understanding of the processes that promote or hinder the mobility of arsenic in contaminated environments. They will thus allow us to develop better models for predicting the fate of arsenic and perform more accurate impact/exposure assessments.

Publications and Presentations:

Publications have been submitted on this project: View all 4 publications for this project

Journal Articles:

Journal Articles have been submitted on this project: View all 4 journal articles for this project

Supplemental Keywords:

RFA, Scientific Discipline, Water, Chemistry, Biology, Environmental Chemistry, Arsenic, arsenic transformation, microbial, carcinogenesis, microorganisms, anoxic waters, arsenic exposure, electron acceptor

Progress and Final Reports:

  • 1996
  • 1997
  • Final Report
  • Top of Page

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.

    Project Research Results

    • Final Report
    • 1997
    • 1996
    4 publications for this project
    4 journal articles for this project

    Site Navigation

    • Grantee Research Project Results Home
    • Grantee Research Project Results Basic Search
    • Grantee Research Project Results Advanced Search
    • Grantee Research Project Results Fielded Search
    • Publication search
    • EPA Regional Search

    Related Information

    • Search Help
    • About our data collection
    • Research Grants
    • P3: Student Design Competition
    • Research Fellowships
    • Small Business Innovation Research (SBIR)
    Contact Us to ask a question, provide feedback, or report a problem.
    Last updated April 28, 2023
    United States Environmental Protection Agency

    Discover.

    • Accessibility
    • Budget & Performance
    • Contracting
    • EPA www Web Snapshot
    • Grants
    • No FEAR Act Data
    • Plain Writing
    • Privacy
    • Privacy and Security Notice

    Connect.

    • Data.gov
    • Inspector General
    • Jobs
    • Newsroom
    • Open Government
    • Regulations.gov
    • Subscribe
    • USA.gov
    • White House

    Ask.

    • Contact EPA
    • EPA Disclaimers
    • Hotlines
    • FOIA Requests
    • Frequent Questions

    Follow.