Skip to main content
U.S. flag

An official website of the United States government

Here’s how you know

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

HTTPS

Secure .gov websites use HTTPS
A lock (LockA locked padlock) or https:// means you have safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Environmental Topics
  • Laws & Regulations
  • Report a Violation
  • About EPA
Contact Us

Grantee Research Project Results

Ultrasensitive Pathogen Quantification in Drinking Water Using Highly Piezoelectric PMN-PT Microcantilevers

EPA Grant Number: R829604
Title: Ultrasensitive Pathogen Quantification in Drinking Water Using Highly Piezoelectric PMN-PT Microcantilevers
Investigators: Shih, Wan Y. , Mutharasan, R. , Shih, W.-H. , Lee, Y.
Current Investigators: Shih, Wan Y. , Shih, W.-H. , Mutharasan, R.
Institution: Drexel University
EPA Project Officer: Aja, Hayley
Project Period: January 1, 2002 through December 31, 2004 (Extended to December 31, 2005)
Project Amount: $449,713
RFA: Exploratory Research: Nanotechnology (2001) RFA Text |  Recipients Lists
Research Category: Safer Chemicals , Nanotechnology

Description:

The goal of proposed research is to use highly piezoelectric microcantilever arrays for in-situ rapid simultaneous multiple pathogen quantification in source water with the ability to detect pathogens using electrical means with unprecedented sensitivity (10-15g). The proposed piezoelectric microcantilevers with antibodies specific to the target pathogens immobilized at the cantilever tip will measure the presence of pathogens with femtogram (a small fraction of a cell's mass) sensitivity in source water. This represents the ability to detect a single cell. We will demonstrate the use of the highly piezoelectric microcantilever for simultaneous quantification of model pathogens, Cryptosporidium parvum, Helicobacter pylori and Escherichia coli 0157.

Approach:

The device consists of a highly piezoelectric lead magnesium niobate-lead titanate solid solution (PMN-PT) cantilever smaller than 10 p.m in length coupled to antibody proteins immobilized at the cantilever tip. Binding of target pathogens is detected by monitoring the resonance frequency shift. The resonance frequency shift transient can be used to characterize the amount of pathogens present in the drinking water. Typical drinking water contains a few pathogens in a liter. Because of the small size, the proposed PMN-PT microcantilever is capable of single bacterium detection in a small volume. In the initial step, we will test the device by concentrating pathogens in drinking water to a small volume, 400 pl, which allows for faster detection. The concentration in the small volume will be determined from the transient and correlated with the concentration in drinking water. Ultimately, we will quantify the pathogen concentration directly in drinking water. Because the proposed piezoelectric cantilever sensors use electrical signal for actuation and detection, the sensor and all necessary electronics can be organized in a compact form and easily usable in such broad ranging applications as environmental monitoring and genomics-inspired proteomics. The proposed study is both a beneficiary and an enabling technology involving nanometer scale engineering: (i) the fabrication of the extremely highly piezoelectric but difficult to make PMN-PT thin layers involves coating Mg(OH)2 nanolayers on nanometer-size niobium oxide particles; and (ii) the proposed sensor offers the unprecedented ability to detect and manipulate a nanometer-size object, a single pathogen in water.

Expected Results:

There is an immediate need for rapid, quantitative, and specific pathogen detection to ensure the safety of natural and manmade water supplies, including source, treated, distributed and recreational waters. It is anticipated that as a result of the proposed study, ultrasensitive, rapid, specific, multiple pathogen quantification of drinking water will be achieved using arrays of highly piezoelectric PMN-PT unimorph microcantilevers of less than 10pm in length with better than 10 g/Hz sensitivity coupled with antibodies specific to the target pathogens immobilized at the cantilever tip.

Publications and Presentations:

Publications have been submitted on this project: View all 33 publications for this project

Journal Articles:

Journal Articles have been submitted on this project: View all 7 journal articles for this project

Supplemental Keywords:

watershed, human health, pathogens, bacteria, engineering, modeling,, RFA, Scientific Discipline, Water, Ecosystem Protection/Environmental Exposure & Risk, Sustainable Industry/Business, Sustainable Environment, Environmental Chemistry, Technology for Sustainable Environment, Monitoring/Modeling, Biochemistry, New/Innovative technologies, Drinking Water, Environmental Engineering, Engineering, Chemistry, & Physics, pathogens, environmental monitoring, aquatic ecosystem, nanosensors, pathogen quantification, chemical sensors, piezoelectric microcantilevers, aquatic organisms, bacteria, other - risk assessment, nanotechnology, environmental sustainability, chemical composition, analytical chemistry, pathogenic quantification, environmentally applicable nanoparticles, pathogen qualtification, microbial risk management, sustainability, emerging pathogens, nano engineering, drinking water contaminants, innovative technologies

Progress and Final Reports:

  • 2002
  • 2003 Progress Report
  • 2004 Progress Report
  • Final Report
  • Top of Page

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.

    Project Research Results

    • Final Report
    • 2004 Progress Report
    • 2003 Progress Report
    • 2002
    33 publications for this project
    7 journal articles for this project

    Site Navigation

    • Grantee Research Project Results Home
    • Grantee Research Project Results Basic Search
    • Grantee Research Project Results Advanced Search
    • Grantee Research Project Results Fielded Search
    • Publication search
    • EPA Regional Search

    Related Information

    • Search Help
    • About our data collection
    • Research Grants
    • P3: Student Design Competition
    • Research Fellowships
    • Small Business Innovation Research (SBIR)
    Contact Us to ask a question, provide feedback, or report a problem.
    Last updated April 28, 2023
    United States Environmental Protection Agency

    Discover.

    • Accessibility
    • Budget & Performance
    • Contracting
    • EPA www Web Snapshot
    • Grants
    • No FEAR Act Data
    • Plain Writing
    • Privacy
    • Privacy and Security Notice

    Connect.

    • Data.gov
    • Inspector General
    • Jobs
    • Newsroom
    • Open Government
    • Regulations.gov
    • Subscribe
    • USA.gov
    • White House

    Ask.

    • Contact EPA
    • EPA Disclaimers
    • Hotlines
    • FOIA Requests
    • Frequent Questions

    Follow.