Skip to main content
U.S. flag

An official website of the United States government

Here’s how you know

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

HTTPS

Secure .gov websites use HTTPS
A lock (LockA locked padlock) or https:// means you have safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Environmental Topics
  • Laws & Regulations
  • Report a Violation
  • About EPA
Contact Us

Grantee Research Project Results

Adaptability of Biofilm Exopolymeric Substances to Hydrophobicity and Hydrophilicity

EPA Grant Number: U915832
Title: Adaptability of Biofilm Exopolymeric Substances to Hydrophobicity and Hydrophilicity
Investigators: Steinberger, Rachel E.
Institution: University of California - Santa Barbara
EPA Project Officer: Packard, Benjamin H
Project Period: August 1, 2000 through August 1, 2003
Project Amount: $77,989
RFA: STAR Graduate Fellowships (2000) RFA Text |  Recipients Lists
Research Category: Fellowship - Microbiology , Academic Fellowships , Biology/Life Sciences

Objective:

The objective of this research project is to understand how hydrophobic substances and surfaces stimulate changes in the exopolymeric substances surrounding bacteria and the consequences of those changes on rates of bioremediation.

Approach:

The paradigm behind this work is one of comparative differences. Using Pseudomonas aeruginosa as a model organism, exopolymers (EPS) collected from parallel cultures grown under different conditions are characterized by both chemical composition and functional properties. Cultures grow in both saturated and unsaturated conditions, using no substrata, hydrophobic (polystyrene) substrata, and hydrophilic (sand) substrata. The bacteria also are grown on a variety of carbon sources with varying hydrophobicity, including glucose, decane, and hexadecane. Using measured values from these experiments as parameters, a simple numerical model will be constructed describing the transfer of pollutants to the bacteria on a microscale. The model's predictions will be compared with long-term small-scale laboratory bioremediation experiments.

Expected Results:

In most natural environments, bacteria live predominantly in communities encased by bacterial EPS. The EPS forms a mass transfer barrier creating a microenvironment for the bacteria distinctly different from the macroenvironment. By changing the chemical compositions of this barrier, the bacteria should be able to mediate what comes into their environment. Because bioremediation of most pollutants is mass transfer-limited, an understanding of the relation between changes in EPS chemical properties and the uptake of organic pollutants will improve our ability to accurately predict rates of bioremediation.

Supplemental Keywords:

soil, absorption, bioavailability, toxics, organics, NAPL, bacteria, bioremediation, biology, biofilms, EPS, hydrophobicity, Pseudomonas aeruginosa., Scientific Discipline, Waste, Ecosystem Protection/Environmental Exposure & Risk, Bioavailability, Remediation, Chemistry, Environmental Microbiology, Microbiology, Fate & Transport, Bioremediation, model, organic pollutants, exopolymers (EPS), NAPL, microenvironment, mass transfer, modeling, soils, model organism, organics, Pseudomonas aeruginosa, biofilm model, models, numerical modeling, absorption, exoplymeric substances, mass transfer limitations, organic contaminants

Progress and Final Reports:

  • 2001
  • 2002
  • Final
  • Top of Page

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.

    Site Navigation

    • Grantee Research Project Results Home
    • Grantee Research Project Results Basic Search
    • Grantee Research Project Results Advanced Search
    • Grantee Research Project Results Fielded Search
    • Publication search
    • EPA Regional Search

    Related Information

    • Search Help
    • About our data collection
    • Research Grants
    • P3: Student Design Competition
    • Research Fellowships
    • Small Business Innovation Research (SBIR)
    Contact Us to ask a question, provide feedback, or report a problem.
    Last updated April 28, 2023
    United States Environmental Protection Agency

    Discover.

    • Accessibility
    • Budget & Performance
    • Contracting
    • EPA www Web Snapshot
    • Grants
    • No FEAR Act Data
    • Plain Writing
    • Privacy
    • Privacy and Security Notice

    Connect.

    • Data.gov
    • Inspector General
    • Jobs
    • Newsroom
    • Open Government
    • Regulations.gov
    • Subscribe
    • USA.gov
    • White House

    Ask.

    • Contact EPA
    • EPA Disclaimers
    • Hotlines
    • FOIA Requests
    • Frequent Questions

    Follow.