Skip to main content
U.S. flag

An official website of the United States government

Here’s how you know

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

HTTPS

Secure .gov websites use HTTPS
A lock (LockA locked padlock) or https:// means you have safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Environmental Topics
  • Laws & Regulations
  • Report a Violation
  • About EPA
Contact Us

Grantee Research Project Results

Lung Injury from Inhaled Ultrafine Particles in Compromised Rats of Old Age: Influence of Priming and Adaptation

EPA Grant Number: R826784
Title: Lung Injury from Inhaled Ultrafine Particles in Compromised Rats of Old Age: Influence of Priming and Adaptation
Investigators: Oberdörster, Günter , Finkelstein, Jacob N.
Current Investigators: Oberdörster, Günter , Elder, Alison C.P. , Finkelstein, Jacob N.
Institution: University of Rochester
EPA Project Officer: Chung, Serena
Project Period: September 1, 1998 through September 20, 2001 (Extended to September 20, 2002)
Project Amount: $606,545
RFA: Health Effects of Particulate Matter and Associated Air Pollutants (1998) RFA Text |  Recipients Lists
Research Category: Particulate Matter , Air Quality and Air Toxics , Human Health , Air

Description:

Epidemiological studies found that ambient particles at low concentrations are associated with mortality and serious morbidity in susceptible parts of the population, e.g., the elderly with cardiorespiratory conditions. Based on results of our previous and preliminary studies we hypothesize that the ultrafine particles as part of the ambient fine mode particles cause oxidative stress in the compromised aged organism which escalates into a significant pulmonary inflammation in the primed (endotoxin-sensitized) organism. Priming of humans can occur following exposures to a variety of agents, including endogenous (intestinal) as well as exogenous (airborne) exposure to endotoxin. Experimental studies have shown that depending on the timing of a second stimulus after priming either a state of sensitization with heightened response or a state of tolerance with lowered response can occur. We focus on ultrafine particles (~20-30 nm) because (i) at low mass concentrations they have a high number concentration and large surface area which is of toxicological significance; (ii) they have a higher deposition efficiency in the alveolar region than any other particle size; (iii) they penetrate rapidly across the pulmonary epithelium and reach interstitial sites; and (iv) they are generally more biologically reactive than larger particles.

Approach:

We will test our hypothesis by establishing exposure response relationships for environmentally-relevant particles of ultrafine carbon and iron oxide in emphysematous and healthy 26-month old rats, with and without prior short-term endotoxin inhalation. Exposure will be for 6 hrs. at concentrations of 30, 60, and 120 ?g/m3. We will evaluate parameters of pulmonary and systemic mediators of inflammation, cell activation and tissue damage related to oxidative stress. Comparison will be made to larger particles of carbon and iron oxide resembling accumulation mode particles. We will also investigate the role of alveolar macrophages and epithelial type II cells in the ultrafine particle-induced events using an AM-depleted rat model and a novel in vitro system to expose AM and type II cells to airborne ultrafine particles.

Expected Results:

We expect that low inhaled mass concentrations of ultrafine carbon and iron oxide particles will induce effects in old rats with emphysema (as a model of COPD) and that a significantly increased inflammatory response with systemic effects occurs with endotoxin priming characterized by increased activation of inflammatory cells, greater release of inflammatory mediators and greater release of oxidants causing tissue damage.

Improvement in Risk Assessment/Risk Management: First results of our studies will become available in time to be considered for the next Air Quality Criteria Document of EPA. If our results demonstrate that the aged organism under certain conditions (compromised; sensitized) is significantly affected by short-term exposure to low mass concentrations of ultrafine particles, this will have serious consequences for public health and regulatory standards for particulate matter. Not only will the new PM2.5 standard have to be reconsidered, but a drastic change to a standard defined by particle number has to be made. Furthermore, respective sources for ultrafine particles have to be targeted to be controlled.

Publications and Presentations:

Publications have been submitted on this project: View all 24 publications for this project

Journal Articles:

Journal Articles have been submitted on this project: View all 8 journal articles for this project

Supplemental Keywords:

Urban air, exposure, risk, human health, sensitive population, animal, elderly, susceptibility, particulates, metals., RFA, Health, Air, Scientific Discipline, Susceptibility/Sensitive Population/Genetic Susceptibility, particulate matter, genetic susceptability, Environmental Chemistry, Atmospheric Sciences, Disease & Cumulative Effects, Toxicology, Environmental Engineering, inhalability, emphysema, health effects, lung dysfunction, air quality, environmental hazard exposures, health risks, sensitive populations, pulmonary disease, elderly, lung inflammation, mortality, respiratory, sensitive subgroups, laboratory animals, morbidity, Acute health effects, effects assessment, particulates, tissue damage, chronic health effects, oxidant stress, air pollutants, air contaminant exposure, toxics, human health effects, metals, air pollution, highrisk groups, human susceptibility, air toxics, ultrafine particles, airway disease, exposure assessment, respiratory problems

Progress and Final Reports:

  • 1999
  • 2000 Progress Report
  • 2001
  • 2002
  • Final Report
  • Top of Page

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.

    Project Research Results

    • Final Report
    • 2002
    • 2001
    • 2000 Progress Report
    • 1999
    24 publications for this project
    8 journal articles for this project

    Site Navigation

    • Grantee Research Project Results Home
    • Grantee Research Project Results Basic Search
    • Grantee Research Project Results Advanced Search
    • Grantee Research Project Results Fielded Search
    • Publication search
    • EPA Regional Search

    Related Information

    • Search Help
    • About our data collection
    • Research Grants
    • P3: Student Design Competition
    • Research Fellowships
    • Small Business Innovation Research (SBIR)
    Contact Us to ask a question, provide feedback, or report a problem.
    Last updated April 28, 2023
    United States Environmental Protection Agency

    Discover.

    • Accessibility
    • Budget & Performance
    • Contracting
    • EPA www Web Snapshot
    • Grants
    • No FEAR Act Data
    • Plain Writing
    • Privacy
    • Privacy and Security Notice

    Connect.

    • Data.gov
    • Inspector General
    • Jobs
    • Newsroom
    • Open Government
    • Regulations.gov
    • Subscribe
    • USA.gov
    • White House

    Ask.

    • Contact EPA
    • EPA Disclaimers
    • Hotlines
    • FOIA Requests
    • Frequent Questions

    Follow.