Skip to main content
U.S. flag

An official website of the United States government

Here’s how you know

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

HTTPS

Secure .gov websites use HTTPS
A lock (LockA locked padlock) or https:// means you have safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Environmental Topics
  • Laws & Regulations
  • Report a Violation
  • About EPA
Contact Us

Grantee Research Project Results

Beneficial Reuse of Foundry Sands in Controlled Low-Strength Material

EPA Grant Number: U915330
Title: Beneficial Reuse of Foundry Sands in Controlled Low-Strength Material
Investigators: Dingrando, Jeffrey S.
Institution: University of Wisconsin - Madison
EPA Project Officer: Packard, Benjamin H
Project Period: September 1, 1998 through September 1, 2001
Project Amount: $34,000
RFA: STAR Graduate Fellowships (1998) RFA Text |  Recipients Lists
Research Category: Academic Fellowships , Safer Chemicals , Fellowship - Civil Engineering

Objective:

The objective of this research project is to: (1) assess the feasibility of using waste foundry sands as fine aggregate in controlled, low-strength material (flowable fill); and (2) categorize waste foundry sands based on performance in flowable fill to simplify mix design and increase opportunities for beneficial reuse of waste foundry sand.

Approach:

A number of different foundry sands, representative of the foundry sands used in Wisconsin, were mixed with portland cement, fly ash, and water to create flowable fill. Mix performance was based on key criteria for flowable fill: flowability, setting time, and strength. First, components were mixed in various proportions until a minimum flow was achieved. Minimum flow refers to a condition in which the material is self-compacting, self-leveling, and will flow around obstructions. The changes in flow over time, because of thixotropic effects of the clay fraction of foundry sand and/or cementation effects, also were evaluated. Second, mixes were tested for strength and strength gain over time with unconfined compression tests. Achieving some minimum strength is required to accept loads such as pavement and traffic. However, limiting the strength to some maximum also is critical because most flowable fill applications require the ability to excavate the material at a later date. The effects of environmental factors (freeze-thaw, wet-dry) on the durability of the materials also were evaluated. Changes in sand type, cement content, fly ash content, and water content were correlated to performance, and conclusions were made about the influence of each factor. The applicability of flowable fill test methods, which are relatively new, also was examined, and recommendations were made for future testing procedures.

Supplemental Keywords:

fellowship, foundry sands, clay fraction, cement, fly ash, flowable fill, waste foundry sand, reuse., RFA, Scientific Discipline, Sustainable Industry/Business, cleaner production/pollution prevention, Sustainable Environment, Chemistry, Civil/Environmental Engineering, Technology for Sustainable Environment, Chemistry and Materials Science, New/Innovative technologies, Environmental Engineering, foundary industry, waste reduction, foundry industry, construction fill, controlled low strength material (CLSM), optimal mix proportions, alternative materials, metal casting, optimization, benonite, construction material, generic mix design

Progress and Final Reports:

  • 1999
  • 2000
  • Final
  • Top of Page

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.

    Site Navigation

    • Grantee Research Project Results Home
    • Grantee Research Project Results Basic Search
    • Grantee Research Project Results Advanced Search
    • Grantee Research Project Results Fielded Search
    • Publication search
    • EPA Regional Search

    Related Information

    • Search Help
    • About our data collection
    • Research Grants
    • P3: Student Design Competition
    • Research Fellowships
    • Small Business Innovation Research (SBIR)
    Contact Us to ask a question, provide feedback, or report a problem.
    Last updated April 28, 2023
    United States Environmental Protection Agency

    Discover.

    • Accessibility
    • Budget & Performance
    • Contracting
    • EPA www Web Snapshot
    • Grants
    • No FEAR Act Data
    • Plain Writing
    • Privacy
    • Privacy and Security Notice

    Connect.

    • Data.gov
    • Inspector General
    • Jobs
    • Newsroom
    • Open Government
    • Regulations.gov
    • Subscribe
    • USA.gov
    • White House

    Ask.

    • Contact EPA
    • EPA Disclaimers
    • Hotlines
    • FOIA Requests
    • Frequent Questions

    Follow.