Skip to main content
U.S. flag

An official website of the United States government

Here’s how you know

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

HTTPS

Secure .gov websites use HTTPS
A lock (LockA locked padlock) or https:// means you have safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Environmental Topics
  • Laws & Regulations
  • Report a Violation
  • About EPA
Contact Us

Grantee Research Project Results

Development and Demonstration of a Hollow Fiber Membrane Bioreactor for Cometabolic Degradation of Chlorinated Solvents

EPA Grant Number: U915323
Title: Development and Demonstration of a Hollow Fiber Membrane Bioreactor for Cometabolic Degradation of Chlorinated Solvents
Investigators: Pressman, Jonathan G.
Institution: The University of Texas at Austin
EPA Project Officer: Packard, Benjamin H
Project Period: August 26, 1998 through July 1, 2001
Project Amount: $93,235
RFA: STAR Graduate Fellowships (1998) RFA Text |  Recipients Lists
Research Category: Fellowship - Environmental , Safer Chemicals , Academic Fellowships

Objective:

Contamination of groundwater and soils with chlorinated aliphatic solvents is a widespread problem. The overall objective of this research project is to develop a new technology to address chlorinated solvent problems. The technology will treat ethenes, ethanes, and chlorinated methanes, handle mixed wastes containing chemicals that are toxic to the organisms, and be applicable to both contaminated water and air streams. The specific objectives of this research project are to: (1) demonstrate successful performance of the hollow fiber membrane (HFM) bioreactor for treating trichloroethylene-contaminated water and air; (2) understand the fundamental interactions between and among microbial metabolism and bioreactor performance; (3) understand the engineering design variables to develop a system design strategy; and (4) extend HFM bioreactor studies to other chlorinated solvents and mixtures of chlorinated solvents.

Approach:

One promising approach for treating chlorinated solvents is to destroy them through cometabolism in aerobic biological processes. The feasibility of using microporous HFMs to remove chlorinated solvents from water with subsequent cometabolic biodegradation by methanotrophic bacteria was demonstrated previously in our laboratory. This research project is designed to develop, operate, and optimize the HFM system. I will identify important process variables and the interactions among them, the appropriate system configuration, and the optimal operating strategies. Computer models of the process will be refined to assist in the analysis, design, and operation of the process.

Supplemental Keywords:

fellowship, hollow fiber membrane, HFM, trichloroethylene, methanotrophs, biodegradation, bioreactor, chlorinated solvents, groundwater, cometabolic degradation., RFA, Scientific Discipline, Toxics, Waste, Water, National Recommended Water Quality, Environmental Chemistry, Chemistry, Hazardous Waste, Biochemistry, Bioremediation, Chemistry and Materials Science, Groundwater remediation, Hazardous, Engineering, Chemistry, & Physics, Environmental Engineering, biodegradability, mixed waste, hollow fiber membrane reactors, methane degrading bacteria, biodegradation, cometabolism, membrane bioreactors, contaminated soil, membrane processes, Trichloroethylene, aerobic cometabolism, bioreactors, chlorinated organics, contaminated groundwater, groundwater contamination, chlorinated chemicals, contaminated aquifers, contaminated soils, groundwater, TCE

Progress and Final Reports:

  • 1999
  • 2000
  • Final
  • Top of Page

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.

    Site Navigation

    • Grantee Research Project Results Home
    • Grantee Research Project Results Basic Search
    • Grantee Research Project Results Advanced Search
    • Grantee Research Project Results Fielded Search
    • Publication search
    • EPA Regional Search

    Related Information

    • Search Help
    • About our data collection
    • Research Grants
    • P3: Student Design Competition
    • Research Fellowships
    • Small Business Innovation Research (SBIR)
    Contact Us to ask a question, provide feedback, or report a problem.
    Last updated April 28, 2023
    United States Environmental Protection Agency

    Discover.

    • Accessibility
    • Budget & Performance
    • Contracting
    • EPA www Web Snapshot
    • Grants
    • No FEAR Act Data
    • Plain Writing
    • Privacy
    • Privacy and Security Notice

    Connect.

    • Data.gov
    • Inspector General
    • Jobs
    • Newsroom
    • Open Government
    • Regulations.gov
    • Subscribe
    • USA.gov
    • White House

    Ask.

    • Contact EPA
    • EPA Disclaimers
    • Hotlines
    • FOIA Requests
    • Frequent Questions

    Follow.