Skip to main content
U.S. flag

An official website of the United States government

Here’s how you know

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

HTTPS

Secure .gov websites use HTTPS
A lock (LockA locked padlock) or https:// means you have safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Environmental Topics
  • Laws & Regulations
  • Report a Violation
  • About EPA
Contact Us

Grantee Research Project Results

Receptor-Based Modeling of Groundwater Contamination

EPA Grant Number: U915324
Title: Receptor-Based Modeling of Groundwater Contamination
Investigators: Neupauer, Roseanna M.
Institution: New Mexico Institute of Mining and Technology
EPA Project Officer: Packard, Benjamin H
Project Period: August 1, 1998 through August 1, 2001
Project Amount: $61,567
RFA: STAR Graduate Fellowships (1998) RFA Text |  Recipients Lists
Research Category: Fellowship - Environmental , Safer Chemicals , Academic Fellowships

Objective:

The objective of this research project is to develop a receptor-based modeling technique to improve characterization of known sources of groundwater contamination, and to identify previously unknown sources of groundwater contamination.

Approach:

The governing equation for source-based mathematical models of contaminant transport in groundwater is the advection-dispersion equation (ADE), with the contaminant concentration as the state variable. The source-based ADE can be used to estimate the concentration of the contamination as a function of location and time after release from the source. Receptor-based models use a similar governing equation called the adjoint of the ADE. In the adjoint equation, location or travel time probability is the state variable; therefore, these probabilities are adjoint states of concentration. In the source-based model, the flow of information is downgradient, away from the source; in the receptor-based model, the flow of information is upgradient, away from the receptor and towards possible sources. To account for this reversal of flow, the sign on the advective term in the adjoint equation is reversed, and the receptor is a source of probability in the adjoint equation. The governing equation and boundary and initial conditions of the receptor-based model can be developed from adjoint theory. If contamination is detected at one receptor, the adjoint equation can be solved to obtain a distribution of location or travel time probability. If contamination is detected at multiple receptors, each receptor can be modeled as a source of probability in the adjoint equation; however, the equation does not account for the correlation between the detections. If the contamination parcels that are detected at the two receptors originated from the same source, the transport of the parcels is correlated. Therefore, the adjoint equation must be modified to account for the correlation of the two detections. With two correlated detections, the spread of the probability distributions should be smaller than the spread of the distribution with only one detection. The information from additional detections is expected to reduce the variance of the probability distribution, providing a better estimate of the source location.

Supplemental Keywords:

fellowship, groundwater contamination, contaminant transport, advection-dispersion equation, travel time probability, location probability, receptor-based modeling., RFA, Scientific Discipline, Waste, Ecosystem Protection/Environmental Exposure & Risk, Hydrology, Physics, Fate & Transport, Monitoring/Modeling, Environmental Monitoring, Engineering, Environmental Engineering, Groundwater remediation, fate and transport, model, contaminants, receptor-based modeling, modeling, contaminant transport model, transport models, groundwater contamination, contaminated groundwater, contaminant transport models, transport

Progress and Final Reports:

  • 1999
  • 2000
  • Final
  • Top of Page

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.

    Site Navigation

    • Grantee Research Project Results Home
    • Grantee Research Project Results Basic Search
    • Grantee Research Project Results Advanced Search
    • Grantee Research Project Results Fielded Search
    • Publication search
    • EPA Regional Search

    Related Information

    • Search Help
    • About our data collection
    • Research Grants
    • P3: Student Design Competition
    • Research Fellowships
    • Small Business Innovation Research (SBIR)
    Contact Us to ask a question, provide feedback, or report a problem.
    Last updated April 28, 2023
    United States Environmental Protection Agency

    Discover.

    • Accessibility
    • Budget & Performance
    • Contracting
    • EPA www Web Snapshot
    • Grants
    • No FEAR Act Data
    • Plain Writing
    • Privacy
    • Privacy and Security Notice

    Connect.

    • Data.gov
    • Inspector General
    • Jobs
    • Newsroom
    • Open Government
    • Regulations.gov
    • Subscribe
    • USA.gov
    • White House

    Ask.

    • Contact EPA
    • EPA Disclaimers
    • Hotlines
    • FOIA Requests
    • Frequent Questions

    Follow.