Grantee Research Project Results
Final Report: High Performance, Zero ODP Halon 1301 Replacement
EPA Contract Number: 68D00255Title: High Performance, Zero ODP Halon 1301 Replacement
Investigators: Nimitz, Jonathan S.
Small Business: Nimitz Inc.
EPA Contact:
Phase: I
Project Period: September 1, 2000 through March 1, 2001
Project Amount: $70,000
RFA: Small Business Innovation Research (SBIR) - Phase I (2000) RFA Text | Recipients Lists
Research Category: SBIR - Pollution Prevention , Pollution Prevention/Sustainable Development , Small Business Innovation Research (SBIR)
Description:
Goals of the U.S. Environmental Protection Agency (EPA) include elimination of ozone-depleting substances and reduction of high global warming substances. Halon 1301 has high ozone-depletion potential (ODP) and global warming potential (GWP), and its production has been phased out in developed countries including the U.S. Most current EPA-approved alternatives to Halon 1301 are much less effective, have high GWPs, and require new equipment. The purpose of this Phase I project was to determine the technical and commercial feasibility of an innovative, low cost, high-performance, zero ODP, low global warming, total flooding firefighting agent for direct replacement of Halon 1301 in new and existing equipment.The Phase I objectives and questions answered included:
- Determine effectiveness of the proposed agent in suppressing combustion of a
variety of common fuels. Will the proposed agent be as effective as
predicted?
- Determine effectiveness of the proposed agent at larger scale. Is the agent
still as effective when used at somewhat larger scale under conditions that more
closely resemble real world conditions?
- Measure compositional stability of the proposed agent. Will the proposed
agent maintain effectiveness?
- Estimate cost versus benefit for proposed agent compared to Halon 1301 and
current alternatives. Does the proposed agent appear to be an attractive product
and what customer savings can be realized?
To establish technical feasibility, cup-burner, stability, and small chamber
extinguishment tests were conducted on selected compositions of the new agent.
From the results of testing and known data from the literature, costs and
benefits of the new agent were estimated and compared to those of Halon 1301 and
current EPA approved alternatives to determine commercial feasibility.
Testing based on the apparatus and procedure of the new International
Standards Organization (ISO) Cup-Burner standard test was conducted by an
experienced independent third party test laboratory. The extinguishment
effectiveness on n-heptane of a carefully chosen selection of agent compositions
was determined. A near-optimal composition was tested for its extinguishment
effectiveness on the fuels n-heptane, propane, JP-5 jet fuel, JP-8 jet fuel,
diesel fuel, hydraulic fluid, turbo hydraulic oil, and gasohol. From the
cup-burner results an optimal composition was chosen based principally on
estimated cost-effectiveness per volume protected.
Compositional stability of the optimal composition at three different
temperatures was measured in the ETEC?s laboratory based on standard
procedures.
Small chamber total flooding extinguishment tests of n-heptane pan fires were
conducted on the optimal composition in a chamber of approximately one cubic
meter volume by the independent third party laboratory. Small chamber tests are
larger scale than the cup-burner and closer to real-world fire scenarios. Small
chamber tests were conducted over a range of ETEC Agent A concentrations from
2.9% to 4.3% by volume in air.
Costs and benefits were analyzed by ETEC based on the test results and known costs. In addition, Foresight Science & Technology, Inc. prepared a Commercialization Assessment Report that examined the market for and estimated the commercialization potential of the new agent.
Summary/Accomplishments (Outputs/Outcomes):
ETEC Agent A was found to be an excellent fire suppressant. The optimum composition was effective at about 3.5% by volume in air for extinguishing a variety of fuels. The optimum composition is just slightly less effective than Halon 1301 and about twice as effective as HFC-227ea. ETEC Agent A is sufficiently effective that it could be used as a direct replacement for Halon 1301 in existing Halon 1301 systems with addition of a small auxiliary tank.The new agent was found to be compositionally stable over a range of
temperatures.
Cost analysis shows that ETEC Agent A will have a decided cost advantage over
existing alternatives, and at the same time use a smaller, lighter weight system
or an existing Halon 1301 system. New systems using ETEC Agent A would be
significantly less expensive in both capital cost and life cycle cost than new
HFC or inert gas systems. Estimated capital cost for a new ETEC Agent A fire
suppression system is about 20% less than HFC and inert gas systems. The
estimated 20 and 30 year lifecycle cost of an ETEC Agent A system is 5 ? 25%
less than HFC and inert gas systems. For retrofit of existing Halon 1301
systems, ETEC Agent A is estimated to be much less expensive, having only
one-fifth the capital cost and one-third to one-quarter the life cycle cost of
HFCs or inert gases.
Foresight felt that the market for total flooding fire suppression systems is growing well (about 7% annually) because of increasing use of computer, networking, and telecommunications equipment that require total flooding fire suppression systems. Foresight felt that the benchmark price for a total flooding fire suppressant (but not including estimated system equipment cost) was $20/lb. We estimate ETEC Agent A?s price to be 20% below the Foresight's benchmark price.
Conclusions:
The Phase I effort has established the technical and commercial feasibility of a new, low cost, high-performance, zero ODP, low GWP, total flooding firefighting agent (ETEC Agent A) that can directly replace Halon 1301 in normally unoccupied areas.ETEC Agent A is just slightly less effective than Halon 1301 and could be
used in the same equipment. In Halon 1301 retrofit applications ETEC Agent A
will have a large cost advantage over existing Halon 1301 alternatives. In new
installation applications ETEC Agent A will have a significant cost advantage
over existing Halon 1301 alternatives.
ETEC Agent A has less than 15% of the global warming potential per use of any
hydrofluorocarbon (HFC) agent, and is significantly less toxic than
trifluoromethyl iodide, the only other direct Halon 1301 replacement. ETEC Agent
A should also produce much less of the highly toxic and corrosive compound
hydrogen fluoride (HF) during fire suppression actions. ETEC Agent A will
produce less pressure surge than inert gas systems, and there will be no reduced
oxygen level concerns during discharge of ETEC Agent A.
The independent commercialization assessment by Foresight Science &
Technology concludes that ETEC Agent A has a good possibility of commercial
success because of its increased effectiveness versus HFC and inert gas agents
and its ability to use smaller, lighter extinguishing systems than HFC or inert gas agents in new installations.
Recommendations:
The new agent has great promise and it is recommended
that it be prepared for commercialization in Phase II of this effort. Several
Phase II tasks are recommended to help prepare the new agent for
commercialization. Discussions will be held with major fire suppression
equipment manufacturers to establish the framework for licensing or joint
venture agreements to commercialize the new agent. With the additional funding
available in Phase II, a version of ETEC Agent A with promise of further reduced
toxicity will be investigated to determine whether the agent might be adapted
for use in normally occupied areas. Either the current formula or, if
successful, the reduced-toxicity formula will be carried forward into advanced
development. The long-term compatibility of the new agent with common materials
of fire suppression equipment, and in particular existing Halon 1301 system
materials of construction, will be determined. Additional fire suppression
testing including testing at larger scale will be conducted to meet the
requirements of the National Fire Protection Association (NFPA) and the EPA
Significant New Alternatives Policy (SNAP) program. A SNAP application will be
prepared and submitted. Engineering studies will establish the requirements for
new systems and what changes are needed to retrofit existing Halon 1301 systems.
Supplemental Keywords:
electronics, explosion, bromofluorocarbon., RFA, Scientific Discipline, Toxics, Air, Sustainable Industry/Business, Chemical Engineering, Sustainable Environment, cleaner production/pollution prevention, Environmental Chemistry, climate change, Chemistry, Technology for Sustainable Environment, CFCs, Atmospheric Sciences, Chemistry and Materials Science, Environmental Engineering, Engineering, Chemistry, & Physics, environmental monitoring, clean technologies, clean technology, halon replacement, ozone depleting chemicals, halon alternative, halons, explosion suppression agent, clean fire agentThe perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.