Reburning With Additive Injection of High-Level NOx Control

EPA Contract Number: 68D99079
Title: Reburning With Additive Injection of High-Level NOx Control
Investigators: Benedict, Laksham
Small Business: EERGC
EPA Contact: Richards, April
Phase: II
Project Period: September 1, 1999 through September 1, 2001
Project Amount: $225,000
RFA: Small Business Innovation Research (SBIR) - Phase II (1999) Recipients Lists
Research Category: Air Quality and Air Toxics , SBIR - Air Pollution , Small Business Innovation Research (SBIR)


Controlling emissions of nitrogen oxides from stationary sources is one of the primary environmental challenges facing the United States. As a means of meeting this challenge, Energy and Environmental Research Corporation (EER) has devised an innovative technique for using inexpensive, readily available additives in conjunction with the reburning process to provide high-level NOx control. Initial technology development work has been completed in a Phase I program. Activities included researching potential additives, conducting combustion experiments, beginning development of a process model to characterize the technology, and evaluating the technical and economic merits of the process. These activities successfully demonstrated that the promoted reburning process can economically provide high-level NOx control. NOx reduction efficiencies of greater than 80 percent were achieved. The incremental improvement in NOx reduction provided by the promoters was as high as 23 percent. The technology now is poised for Phase II development work that will provide the design, operation, performance, and economic data required to demonstrate the process at full scale.

The development work being performed in Phases I and II will demonstrate the technical feasibility of the proposed NOx control concept, provide process data that will allow development of an engineering design for a full-scale application, and assess the economic feasibility of the process. The technology can be applied to new or existing utility and industrial boilers. It is capable of providing high-level NOx control while retaining the cost-effectiveness of gas reburning and not generating any toxic byproducts. Success of the Phase I and II efforts will lead directly to full-scale application on a utility or industrial coal-fired boiler.

Supplemental Keywords:

small business, SBIR, air emissions, pollution prevention, engineering, chemistry, EPA., RFA, Scientific Discipline, Air, Toxics, Waste, Sustainable Industry/Business, Chemical Engineering, air toxics, cleaner production/pollution prevention, Environmental Chemistry, HAPS, Civil/Environmental Engineering, Hazardous Waste, Incineration/Combustion, Hazardous, Environmental Engineering, Nox, sulfur oxides, Nitrogen Oxides, combustion byproducts, hazardous waste disposal, oxidation, cleaner production, advanced treatment technologies, hazardous waste incineration, industrial technology, clean technology, low Nox burner, acid rain precursors, fugitive emissions, emission controls, hazardous waste incinerators, emissions, energy efficiency, waste incineration, combustion technology, industrial boilers, gas reburning, contaminant management, increased burn rate, combustion, industrial innovations, air emissions, incineration, pollution prevention, process optimization, nitrogen oxides (Nox), acid deposition, acid rain, combustion contaminants

Progress and Final Reports:

  • Final