Skip to main content
U.S. flag

An official website of the United States government

Here’s how you know

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

HTTPS

Secure .gov websites use HTTPS
A lock (LockA locked padlock) or https:// means you have safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Environmental Topics
  • Laws & Regulations
  • Report a Violation
  • About EPA
Contact Us

Grantee Research Project Results

1790nm Tunable Laser for VOC Monitoring

EPA Contract Number: 68HERC22C0009
Title: 1790nm Tunable Laser for VOC Monitoring
Investigators: Morrison, Gordon
Small Business: Freedom Photonics
EPA Contact: Richards, April
Phase: I
Project Period: December 1, 2021 through May 31, 2022
Project Amount: $99,999
RFA: Small Business Innovation Research (SBIR) Phase I (2022) RFA Text |  Recipients Lists
Research Category: Small Business Innovation Research (SBIR) , SBIR - Air

Description:

Air toxics, which include a number of volatile organic compounds (VOCs), have been linked to severe health impacts ranging from asthma exacerbations to cancer and premature deaths. In many cases, emissions are localized, and are particularly of concern for communities near industrial sites (which tend to be disproportionately low-income, often with predominantly indigenous or minoritized residents). In order to identify and managehealth risks from exposure to air toxics, the EPA has called for high-sensitivity, high-specificity air monitoring technologies to provide real-time, continuous measurements of VOC concentration at the neighborhood level.

Freedom Photonics is proposing the development of a widely tunable diode laser source, which is a key component of an ultra-sensitive broadband near-infrared (NIR) spectrometer. To date, incorporating our tunablelasers into our commercial partner’s compact, backpack sized instrumentation has enabled sub-parts per billion detection of ethylene oxide. (The ethylene oxide instruments are currently being evaluated by the Georgia EPA inambient monitoring applications.)

The longer-wavelength tunable laser we have proposed will cover NIR absorption bands for more VOCs, and instruments incorporating multiple overlapping tunable laser sources will be capable of observing more spectral features simultaneously. Quantification of more gases in mixtures with improved specificity extends continuous monitoring capabilities to detect leaks of multiple air toxics in real time.

Relative to current EPA methods for volatile toxic organic compound determination, broadband NIR spectroscopy is better suited to ambient monitoring, has a lower detection limit, and does not require sample conditioning. Most current EPA toxic organic determination methods require sample preparation in order to prevent chromatography column contamination – this precludes continuous ambient monitoring, and time consuming chromatographic separation limits sample throughput. Many compounds with similar functional groups may co-elute; fitting multiple peaks introduces more error into quantification by chromatography peak integration. Co-elution also complicates mass spectrometry interpretation, where fragmentation analysis may be needed to distinguish structural isomers. Broadband NIR spectroscopy offers complementary characterization, which can reduce uncertainty when matrix interference is problematic for present organic air toxics methods.

The tunable diode laser spectroscopy market was $450M in 2019, and our capabilities with the proposed new source will expand relevance to other industries. Beyond environmental monitoring, industrial hygiene, and publichealth, which represent global concerns, we foresee applications in chemical process monitoring and oil/gas pipeline monitoring, as well as medical imaging like optical coherence tomography. Our tunable lasers are also suitable for airborne LIDAR applications such as foliage mapping.

Progress and Final Reports:

  • Final Report
  • Top of Page

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.

    Project Research Results

    • Final Report

    Site Navigation

    • Grantee Research Project Results Home
    • Grantee Research Project Results Basic Search
    • Grantee Research Project Results Advanced Search
    • Grantee Research Project Results Fielded Search
    • Publication search
    • EPA Regional Search

    Related Information

    • Search Help
    • About our data collection
    • Research Grants
    • P3: Student Design Competition
    • Research Fellowships
    • Small Business Innovation Research (SBIR)
    Contact Us to ask a question, provide feedback, or report a problem.
    Last updated April 28, 2023
    United States Environmental Protection Agency

    Discover.

    • Accessibility
    • Budget & Performance
    • Contracting
    • EPA www Web Snapshot
    • Grants
    • No FEAR Act Data
    • Plain Writing
    • Privacy
    • Privacy and Security Notice

    Connect.

    • Data.gov
    • Inspector General
    • Jobs
    • Newsroom
    • Open Government
    • Regulations.gov
    • Subscribe
    • USA.gov
    • White House

    Ask.

    • Contact EPA
    • EPA Disclaimers
    • Hotlines
    • FOIA Requests
    • Frequent Questions

    Follow.