Skip to main content
U.S. flag

An official website of the United States government

Here’s how you know

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

HTTPS

Secure .gov websites use HTTPS
A lock (LockA locked padlock) or https:// means you have safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Environmental Topics
  • Laws & Regulations
  • Report a Violation
  • About EPA
Contact Us

Grantee Research Project Results

System toxicological approaches to define and predict the toxicity of Per and Polyfluoroalkyl Substances

EPA Grant Number: R839481
Title: System toxicological approaches to define and predict the toxicity of Per and Polyfluoroalkyl Substances
Investigators: Tanguay, Robyn L. , Field, Jennifer , Reif, David , Truong, Lisa , Ng, Carla , DeWitt, Jamie
Institution: Oregon State University , North Carolina State University
EPA Project Officer: Packard, Benjamin H
Project Period: May 1, 2019 through May 7, 2025
Project Amount: $1,981,500
RFA: National Priorities: Per- and Polyfluoroalkyl Substances (2018) RFA Text |  Recipients Lists
Research Category: Water Quality

Description:

This project will assess the toxicity of a large collection of volatile and non-volatile PFASs (Per and Polyfluroalkyl Substances). The research results will increase the knowledgebase of toxicity profiles for a large collection of PFASs, covering a wide variety of toxicological endpoints, and may provide key scientific information for prioritizing different types of PFAS for effective and efficient risk assessment and management.

Objective:

1: Study the toxicity of a large collection of volatile and non-volatile PFASs and PFAS mixtures with the zebrafish assay. Hypothesis: PFAS compounds with similar structures will bind to the same biomolecular targets, induce expression of the same or highly overlapping gene sets, and induce similar toxic responses.

2: Conduct developmental immunotoxicity (DIT) studies in mice. Hypotheses: Developmental exposure to PFASs will compromise antigen-specific antibody responses (a measure of adaptive immunity) and natural killer cell cytotoxicity (a measure of innate immunity). Developmental findings in the mouse will accord with developmental findings in the zebrafish.

3: Create pharmacokinetic models that can explain and predict the concentrations of PFASs in the organs of mice and adult zebrafish as a function of exposure dose and chemical structure. Hypotheses: The bioaccumulation and internal distribution of PFASs depend on passive diffusion, transporter-mediated membrane uptake and efflux, and protein binding. The interaction of PFASs with proteins and membranes will depend on i) the presence of polar or charged functional groups and on ii) the length of the linear fluorinated alkyl chain.

Approach:

Expose embryonic zebrafish to 100 PFASs and assess them for adverse phenotypic and behavioral effects. Identify the gene expression changes associated with the observed effects. Expose juvenile zebrafish to PFASs and assess them for adverse behavioral effects. Expose mice to PFASs that are toxic to embryonic zebrafish and assess them for developmental immunotoxicity. Create pharmacokinetic models that can explain and predict the concentrations of PFASs in the organs of mice and adult zebrafish as a function of exposure dose and chemical structure.

Expected Results:

The project will increase by 400% the number of PFASs for which the research community has tested for toxicity in vivo. It will help EPA to identify toxic PFASs that require prioritization for risk management. The models developed will improve hazard and risk assessment of many PFASs and thereby improve EPA’s ability to protect human health and the environment. Over the long term, the project could enable researchers to determine the toxicity of PFASs without animal testing, solely on the basis of chemical structure. It could help industries worldwide to understand which PFASs are most toxic and to select or develop non-toxic materials that achieve the same useful results.

Publications and Presentations:

Publications have been submitted on this project: View all 38 publications for this project

Journal Articles:

Journal Articles have been submitted on this project: View all 12 journal articles for this project

Supplemental Keywords:

Zebrafish, High Throughput Screening

Relevant Websites:

Tanguay Lab Exit

Progress and Final Reports:

  • 2019 Progress Report
  • 2020 Progress Report
  • 2021 Progress Report
  • 2022 Progress Report
  • 2023 Progress Report
  • 2024
  • Final Report
  • Top of Page

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.

    Project Research Results

    • Final Report
    • 2024
    • 2023 Progress Report
    • 2022 Progress Report
    • 2021 Progress Report
    • 2020 Progress Report
    • 2019 Progress Report
    38 publications for this project
    12 journal articles for this project

    Site Navigation

    • Grantee Research Project Results Home
    • Grantee Research Project Results Basic Search
    • Grantee Research Project Results Advanced Search
    • Grantee Research Project Results Fielded Search
    • Publication search
    • EPA Regional Search

    Related Information

    • Search Help
    • About our data collection
    • Research Grants
    • P3: Student Design Competition
    • Research Fellowships
    • Small Business Innovation Research (SBIR)
    Contact Us to ask a question, provide feedback, or report a problem.
    Last updated April 28, 2023
    United States Environmental Protection Agency

    Discover.

    • Accessibility
    • Budget & Performance
    • Contracting
    • EPA www Web Snapshot
    • Grants
    • No FEAR Act Data
    • Plain Writing
    • Privacy
    • Privacy and Security Notice

    Connect.

    • Data.gov
    • Inspector General
    • Jobs
    • Newsroom
    • Open Government
    • Regulations.gov
    • Subscribe
    • USA.gov
    • White House

    Ask.

    • Contact EPA
    • EPA Disclaimers
    • Hotlines
    • FOIA Requests
    • Frequent Questions

    Follow.