Skip to main content
U.S. flag

An official website of the United States government

Here’s how you know

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

HTTPS

Secure .gov websites use HTTPS
A lock (LockA locked padlock) or https:// means you have safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Environmental Topics
  • Laws & Regulations
  • Report a Violation
  • About EPA
Contact Us

Grantee Research Project Results

The Dynamic Interaction of Nutrient Pollution and Seawater Temperature on Reef Corals: Is Nutrient Enrichment Undermining Coral Resilience?

EPA Grant Number: FP917794
Title: The Dynamic Interaction of Nutrient Pollution and Seawater Temperature on Reef Corals: Is Nutrient Enrichment Undermining Coral Resilience?
Investigators: Wall, Christopher Bennett
Institution: University of Hawaii at Manoa
EPA Project Officer: Lee, Sonja
Project Period: September 1, 2015 through August 31, 2018
Project Amount: $132,000
RFA: STAR Graduate Fellowships (2015) RFA Text |  Recipients Lists
Research Category: Academic Fellowships

Objective:

Local nutrient pollution and global ocean warming threaten coral reefs by disrupting the symbiosis between reef corals and their symbiont algae (Symbiodinium spp.). Nutrient pollution alters the exchange of metabolites between host and symbiont and can increase the sensitivity of corals to thermal stress, thereby affecting the ability for corals to respond to regional and global environmental change. This research will use field and laboratory experiments to test for nutrient and temperature effects on the performance, bleaching, and nutrition of reef corals and Symbiodinium to offer insights on the response of corals to changing environmental conditions.

Approach:

I will use carbon and nitrogen stable isotopes (d13C, d15N) to test for effects of temperature and nutrient on reef coral nutrition and the autotrophic performance of genetically distinct Symbiodinium types. In a field experiment I will test for nutrient effects on the nutritional modes of corals across a gradient of human impacted reefs in Kaneohe Bay, Hawaii. I will then design a laboratory experiment to test for nutrient and temperature effects on the fixation, exchange, and storage of autotrophic metabolites among coral species and Symbiodinium clades. Data will be used to construct mass balanced carbon budgets, stable isotope mixing models, and trophic relationship for corals under changing environmental conditions.

Expected Results:

The interaction of nutrient pollution and temperature stress affects the function of the coral-algae symbiosis and shapes ecological outcomes for coral reefs. Nutrient pollution destabilizes reef corals by favoring the retention of autotrophic metabolites by the symbiont at the expense of the host, while temperature stress disrupts symbiont photosynthesis and drastically reduces autotrophic nutrition available to the host. Corals display alternative strategies for coping with environmental stress, including shifting modes of nutrition (autotrophy vs. heterotrophy) and associating with stress tolerant and functionally distinct Symbiodinium partners. However, the capacity to be flexible in nutrient acquisition or in symbiont partnerships is not shared among all coral taxa. By evaluating nutritional flexibility and autotrophic performance among reef corals and symbiont types it will be possible to identify whether nutrient and temperature effects on reef corals are conserved or dependent on species or host-symbiont combinations.

Supplemental Keywords:

coral reefs, Symbiodinium, nitrogen, pollution, temperature, bleaching, isotopes, ecology, autotrophy, heterotrophy, nutrition

Progress and Final Reports:

  • 2016
  • 2017
  • Final
  • Top of Page

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.

    Site Navigation

    • Grantee Research Project Results Home
    • Grantee Research Project Results Basic Search
    • Grantee Research Project Results Advanced Search
    • Grantee Research Project Results Fielded Search
    • Publication search
    • EPA Regional Search

    Related Information

    • Search Help
    • About our data collection
    • Research Grants
    • P3: Student Design Competition
    • Research Fellowships
    • Small Business Innovation Research (SBIR)
    Contact Us to ask a question, provide feedback, or report a problem.
    Last updated April 28, 2023
    United States Environmental Protection Agency

    Discover.

    • Accessibility
    • Budget & Performance
    • Contracting
    • EPA www Web Snapshot
    • Grants
    • No FEAR Act Data
    • Plain Writing
    • Privacy
    • Privacy and Security Notice

    Connect.

    • Data.gov
    • Inspector General
    • Jobs
    • Newsroom
    • Open Government
    • Regulations.gov
    • Subscribe
    • USA.gov
    • White House

    Ask.

    • Contact EPA
    • EPA Disclaimers
    • Hotlines
    • FOIA Requests
    • Frequent Questions

    Follow.