Skip to main content
U.S. flag

An official website of the United States government

Here’s how you know

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

HTTPS

Secure .gov websites use HTTPS
A lock (LockA locked padlock) or https:// means you have safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Environmental Topics
  • Laws & Regulations
  • Report a Violation
  • About EPA
Contact Us

Grantee Research Project Results

Improving In Silico Toxicity Predictions and Molecular Design Guidelines Through Mechanism-Based Modeling and Systems Analyses of High Throughput Data: a Case of Oxidative Stress

EPA Grant Number: FP917793
Title: Improving In Silico Toxicity Predictions and Molecular Design Guidelines Through Mechanism-Based Modeling and Systems Analyses of High Throughput Data: a Case of Oxidative Stress
Investigators: Melnikov, Fjodor
Institution: Yale University
EPA Project Officer: Lee, Sonja
Project Period: September 1, 2015 through August 31, 2018
Project Amount: $132,000
RFA: STAR Graduate Fellowships (2015) RFA Text |  Recipients Lists
Research Category: Academic Fellowships

Objective:

This aims of this project is two-fold. First, we will improve in silico tools to assess chemical toxicity and evaluate substitutes for substances likely to induce toxicity via oxidative stress (OS). A particular emphasis will be placed on identifying modes of action (MOA) and molecular initiating events (MIE) involved in OS production and response. Second, we aim to advance the applications of statistical learning algorithms in predictive toxicology by evaluating analytical methods that can effectively elucidating chemical toxicity adverse outcome pathways (AOPs) and interaction among toxic endpoints using large HTS data repositories.

Approach:

We will first build predictive toxicity models for OS-derived toxicity for specific MIEs; furthermore we will elucidate the AOPs through network analysis of HTS data and incorporate the insight into toxicity prediction. The quality of toxicity models relies largely on the quality of chemical descriptors and toxicity data used in model development. To assure highest reliability, toxicity models will be developed based on Tox21 and ToxCast databases that present the largest HTS data collection and curation efforts to date. Chemical properties to assess bioavailability, electrophilic reactivity, and specific non-covalent interactions will be evaluated. Examples of these include octanol-water distribution, and Abraham coefficients, dipoles moments, ionization potential, frontier orbital energies, and molecular shape parameters. All models will be externally validated with in vitro and in vivo data and delivered with an explicit applicability domain. Furthermore, in vivo validation will help establish relevance of in silico predictions to environmental and health effects in the real world.

Expected Results:

We expect to develop predictive and explanatory models for chemical toxicity through the mechanisms of oxidative stress. The models will be used to assess chemical toxicity, prioritize chemicals for further testing, and inform mechanisms of chemical toxicity. Furthermore the chemical insights from properties and insights of toxic substances will be used to design new alternatives for hazardous substances.

Supplemental Keywords:

Predictive Toxicology, Molecular Design, High Throughput Data, Alternatives Assessment, Oxidative Stress, in silico models

Progress and Final Reports:

  • 2016
  • 2017
  • Final
  • Top of Page

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.

    Site Navigation

    • Grantee Research Project Results Home
    • Grantee Research Project Results Basic Search
    • Grantee Research Project Results Advanced Search
    • Grantee Research Project Results Fielded Search
    • Publication search
    • EPA Regional Search

    Related Information

    • Search Help
    • About our data collection
    • Research Grants
    • P3: Student Design Competition
    • Research Fellowships
    • Small Business Innovation Research (SBIR)
    Contact Us to ask a question, provide feedback, or report a problem.
    Last updated April 28, 2023
    United States Environmental Protection Agency

    Discover.

    • Accessibility
    • Budget & Performance
    • Contracting
    • EPA www Web Snapshot
    • Grants
    • No FEAR Act Data
    • Plain Writing
    • Privacy
    • Privacy and Security Notice

    Connect.

    • Data.gov
    • Inspector General
    • Jobs
    • Newsroom
    • Open Government
    • Regulations.gov
    • Subscribe
    • USA.gov
    • White House

    Ask.

    • Contact EPA
    • EPA Disclaimers
    • Hotlines
    • FOIA Requests
    • Frequent Questions

    Follow.