Skip to main content
U.S. flag

An official website of the United States government

Here’s how you know

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

HTTPS

Secure .gov websites use HTTPS
A lock (LockA locked padlock) or https:// means you have safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Environmental Topics
  • Laws & Regulations
  • Report a Violation
  • About EPA
Contact Us

Grantee Research Project Results

Low Cost, Efficient Microchannel Plasma Ozone System for Point of Use Water Treatment

EPA Contract Number: EPD15006
Title: Low Cost, Efficient Microchannel Plasma Ozone System for Point of Use Water Treatment
Investigators: Cho, Jin Hoon
Small Business: EP Purification, Inc.
EPA Contact: Richards, April
Phase: II
Project Period: November 1, 2014 through October 31, 2016 (Extended to October 31, 2017)
Project Amount: $297,500
RFA: Small Business Innovation Research (SBIR) - Phase II (2014) Recipients Lists
Research Category: SBIR - Drinking Water Treatment and Monitoring , Small Business Innovation Research (SBIR)

Description:

A team at EP Purification has performed research for the development and commercialization of low-cost microchannel plasma reactor modules capable of efficiently producing ozone for water treatment and other environmental applications in a slim form factor and size. The conservation of water resources for human consumption is a growing national priority. Ozone is a unique purification agent as it is the strongest oxidant and disinfectant available commercially. It is known to be extremely effective for neutralizing pathogens and the dissociation of toxic organic chemicals, making it ideal for the disinfection of water. Also, ozonation is generally regarded as being superior to traditional disinfection or cleaning methodologies (through a combination of chemical and thermal treatment processes) because the latter requires significant energy consumption to be effective (for heating water), and leaves a number of byproducts and chemical wastes after the process. The primary drawback of ozonation for utility and consumer applications at present is high cost (capital and operating), size and power consumption.
 
In Phase I, EP Purification has developed and demonstrated a series of low cost and yet robust ozone generators based on massively-parallel plasmachemical processing of air or oxygen gases in large arrays of microchannel plasmas. Prototype modules have been realized that produce ozone at a rate of 10 g/hour and with an efficiency comparable to, or higher than, commercially available ozone generators. Furthermore, the size of the module is, at least a factor of 3 smaller than conventional units, and the reduction in production costs is expected be as much as a factor of two. EP Purification designed and fabricated basic modules (in the range of 10 g/h), including the pulse-power supply optimized for this unit, and modules can be combined to obtain the desired ozone production capacity. Currently, for example a ~100 g/hr ozone generation system has been designed by “stacking” basic modules. Additionally, an optimized power supply design was built and is being evaluated in field tests.
 

In Phase II, EP Purification will develop and commercialize a system capable of ozone production at a rate higher than 100 g/hour. Designed for treating water in small/medium system applications, this system will be considerably smaller, more efficient, and more cost effective from both capital and operating perspectives than existing technologies. Also, EP Purification has identified immediate markets of this technology and intends to commercialize this product in point-of-use applications, such as commercial laundries and food preservation during this Phase II program.

Publications and Presentations:

Publications have been submitted on this project: View all 3 publications for this project

Journal Articles:

Journal Articles have been submitted on this project: View all 3 journal articles for this project

Supplemental Keywords:

water treatment, disinfection, ozonation, microplasma, microchannel

Progress and Final Reports:

  • Final Report

  • SBIR Phase I:

    Low Cost, Efficient Microchannel Plasma Ozone Generator for Point of Use Water Treatment

    Top of Page

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.

    Project Research Results

    • Final Report
    • SBIR Phase I
    3 publications for this project
    3 journal articles for this project

    Site Navigation

    • Grantee Research Project Results Home
    • Grantee Research Project Results Basic Search
    • Grantee Research Project Results Advanced Search
    • Grantee Research Project Results Fielded Search
    • Publication search
    • EPA Regional Search

    Related Information

    • Search Help
    • About our data collection
    • Research Grants
    • P3: Student Design Competition
    • Research Fellowships
    • Small Business Innovation Research (SBIR)
    Contact Us to ask a question, provide feedback, or report a problem.
    Last updated April 28, 2023
    United States Environmental Protection Agency

    Discover.

    • Accessibility
    • Budget & Performance
    • Contracting
    • EPA www Web Snapshot
    • Grants
    • No FEAR Act Data
    • Plain Writing
    • Privacy
    • Privacy and Security Notice

    Connect.

    • Data.gov
    • Inspector General
    • Jobs
    • Newsroom
    • Open Government
    • Regulations.gov
    • Subscribe
    • USA.gov
    • White House

    Ask.

    • Contact EPA
    • EPA Disclaimers
    • Hotlines
    • FOIA Requests
    • Frequent Questions

    Follow.