Skip to main content
U.S. flag

An official website of the United States government

Here’s how you know

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

HTTPS

Secure .gov websites use HTTPS
A lock (LockA locked padlock) or https:// means you have safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Environmental Topics
  • Laws & Regulations
  • Report a Violation
  • About EPA
Contact Us

Grantee Research Project Results

Sunlight-Driven Photolysis of Chlorine to Reactive Oxygen Species for Enhanced Inactivation of Chlorine-resistant Microbial Pathogens

EPA Grant Number: F13E10792
Title: Sunlight-Driven Photolysis of Chlorine to Reactive Oxygen Species for Enhanced Inactivation of Chlorine-resistant Microbial Pathogens
Investigators: Zhou, Peiran
Institution: University of Washington
EPA Project Officer: Packard, Benjamin H
Project Period: September 24, 2014 through September 24, 2016
Project Amount: $84,000
RFA: STAR Graduate Fellowships (2013) RFA Text |  Recipients Lists
Research Category: Academic Fellowships , Fellowship - Environmental

Objective:

This research will investigate the use of chlorine photolysis as a sustainable approach to enhancing the effectiveness of chlorine-based disinfection processes. It also will generate data sets of inactivation rate constants and CT values (disinfectant exposure) required for the inactivation of selected chlorine-resistant pathogens—i.e., Mycobacterium avium, Coxsackievirus B5 (CVB5) and C. parvum—during the sunlight-chlorine disinfection process and will enable modeling and optimization of the chlorine photolysis process, with the ultimate objective of facilitating practical implementation.

Approach:

The first stage of the research will use Bacillus subtilis spores as a model chlorine-resistant microorganism to validate and optimize the sunlightchlorine disinfection process by changing irradiation time, initial chlorine concentration, pH, etc. The second stage of the research will apply the optimized treatment condition to inactivate chlorine-resistant pathogens (M. avium, CVB5 and C. parvum) and generate data sets of inactivation rate constants and CT values of selected microorganisms.

Expected Results:

The key outcomes of the research will include (1) validation and optimization of the sunlight-chlorine disinfection approach to determine its effectiveness for inactivation of chlorine-resistant microbial pathogens in real water matrices and (2) generation of data sets of inactivation rate constants and CT values of M. avium, CVB5 and C. parvum inactivation by the proposed process under a wide variety of conditions (e.g., changes in solar irradiation, temperature and pH).

Potential to Further Environmental/Human Health Protection

The proposed water treatment approach could provide a simple, effective, inexpensive and sustainable water disinfection process to inactivate chlorine-resistant pathogens. More important, this can provide a revolutionary way to produce safe drinking water in point-of-use applications, such as backpacking, military operations and emergency water treatment following natural disasters.

Supplemental Keywords:

chlorine, disinfection, drinking water

Progress and Final Reports:

  • 2015
  • Final
  • Top of Page

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.

    Site Navigation

    • Grantee Research Project Results Home
    • Grantee Research Project Results Basic Search
    • Grantee Research Project Results Advanced Search
    • Grantee Research Project Results Fielded Search
    • Publication search
    • EPA Regional Search

    Related Information

    • Search Help
    • About our data collection
    • Research Grants
    • P3: Student Design Competition
    • Research Fellowships
    • Small Business Innovation Research (SBIR)
    Contact Us to ask a question, provide feedback, or report a problem.
    Last updated April 28, 2023
    United States Environmental Protection Agency

    Discover.

    • Accessibility
    • Budget & Performance
    • Contracting
    • EPA www Web Snapshot
    • Grants
    • No FEAR Act Data
    • Plain Writing
    • Privacy
    • Privacy and Security Notice

    Connect.

    • Data.gov
    • Inspector General
    • Jobs
    • Newsroom
    • Open Government
    • Regulations.gov
    • Subscribe
    • USA.gov
    • White House

    Ask.

    • Contact EPA
    • EPA Disclaimers
    • Hotlines
    • FOIA Requests
    • Frequent Questions

    Follow.