Association of Pathogens with Biofilms in Drinking Water Distribution Systems

EPA Grant Number: R834870
Title: Association of Pathogens with Biofilms in Drinking Water Distribution Systems
Investigators: Nguyen, Thanh (Helen) H. , Hozalski, Raymond , Liu, Wen-Tso
Institution: University of Illinois at Urbana-Champaign , University of Minnesota
EPA Project Officer: Pascual, Pasky
Project Period: June 1, 2011 through May 28, 2016
Project Amount: $600,000
RFA: Advancing Public Health Protection through Water Infrastructure Sustainability (2009) RFA Text |  Recipients Lists
Research Category: Drinking Water , Water

Objective:

The following hypotheses will be tested: a) The physical, chemical and microbial characteristics of the indigenous biofilms grown inside drinking water distribution system (DWDS) depends on the surface chemistry and roughness of the piping/coating material; b) The attachment of pathogens to the indigenous biofilm is controlled by water quality parameters such as hardness, ionic strength, and by the presence of the extracellular polymeric substances and surface roughness of the indigenous biofilm; c) Agents that weaken the biofilm matrix (i.e. decrease cohesive strength) will enhance biofilm detachment and be more effective at removing biofilms than those that only inactivate microorganisms. The project objectives include: 1) Determine the attachment mechanisms of selected pathogens to different pipe/coating materials and to indigenous biofilms attached to the pipe walls; and 2) Determine the conditions that lead to detachment of biofilm from the pipe walls. Mycobacterium avium (M. avium), a chlorine-resistant bacterium, is selected as a model waterborne pathogen.

Approach:

M. avium wild type and mutants with different abilities to produce cell surface glycopeptidolipids (GPL) will be studied to represent pathogens with a wide range of surface properties. The variables to be tested include: pipe/coating materials (i.e., polyvinyl chloride, polyethylene, and cement), disinfectant types (i.e. chlorine vs. chloramines) and water composition (e.g., ionic strength and hardness). Experimental methods include: observation and quantification of the growth of indigenous biofilms on coupons made from different pipe materials in biofilm reactors fed with tap water; characterization of the microbial communities in these biofilms; real-time monitoring of pathogen attachment using a parallel flow chamber; testing of changes in biofilm strength and detachment resulting from disinfectants and biofilm disruptor treatments; and pathogen viability tests.

Expected Results:

Successful completion of this project will contribute to the development of an accurate assessment of public health risks related to waterborne pathogens in DWDS, and approaches for minimizing those risks. The results from this project will provide scientific data to allow sound selection of pipe material and coating material for future construction of DWDS infrastructure. Furthermore, new approaches will be developed for cleaning DWDS based on the strategy of weakening the biofilm matrix and enhancing biomass detachment. These approaches will be employed to control biofilm and pathogen proliferation in DWDS so as to minimize related adverse effects on public health.

Publications and Presentations:

Publications have been submitted on this project: View all 13 publications for this project

Journal Articles:

Journal Articles have been submitted on this project: View all 4 journal articles for this project

Supplemental Keywords:

Sustainability, energy-efficiency, public health protection, water-efficiency, innovative technology, Mycobacterium, disinfectant, biofilm cleaning,

Progress and Final Reports:

2011 Progress Report
2012 Progress Report
2013 Progress Report
2014 Progress Report
Final Report