Development of Lightweight Instrumentation for Measurement of Long-Lived Trace Gases

EPA Grant Number: R825222
Title: Development of Lightweight Instrumentation for Measurement of Long-Lived Trace Gases
Investigators: Avallone, Linnea M.
Institution: University of Colorado at Boulder
EPA Project Officer: Hahn, Intaek
Project Period: December 1, 1996 through November 30, 2001
Project Amount: $466,074
RFA: Exploratory Research - Early Career Awards (1996) RFA Text |  Recipients Lists
Research Category: Early Career Awards

Description:

The ozone budget of the upper troposphere is highly uncertain with respect to both chemistry and dynamical effects. Extensive data in the 6 to 12 km region of the atmosphere is needed to constrain the relative roles of various dynamical processes, such as convection and intrusion from the stratosphere. One way to address this data deficit is to take advantage of the sampling capabilities of the fleet of commercial aircraft. To this end, it has been proposed to develop a suite of instruments designed to detect several trace gases that will provide unique signatures of transport phenomena. It is anticipated that the dataset created with this type of program will be useful in the continuing development and testing of global three-dimensional chemical transport models, models of ozone precursor emissions and ambient air quality, and the assessment of the effects of subsonic aviation on ozone distributions.

To accomplish the stated goal, four separate sensors will be combined into a single instrument package suitable for flying in the cargo area of a commercial airliner or other frequently flying plane (i.e., it must be small, lightweight, and autonomous for extended periods of time). Ozone will be measured with a dual-beam ultraviolet absorption instrument, a non-dispersive infrared sensor will be used to detect carbon dioxide, and measurement of water vapor will be accomplished with a tunable diode laser spectrometer. Funding under this grant will support development, testing, and deployment of a prototype, lightweight gas chromatograph system, based on micro-GC technology. A suite of five halocarbons, whose chemical lifetimes in the troposphere span a range from 5 days to 5 years, will be measured. Each of the species selected for this study provides by itself, or in combination with the others, information about the role of one of the dynamical processes controlling ozone distributions in the upper troposphere. Funding from the NASA Atmospheric Effects of Aviation program will support development of the ozone, carbon dioxide and water vapor sensors, packaging, and integration onto a suitable platform.

Publications and Presentations:

Publications have been submitted on this project: View all 17 publications for this project

Supplemental Keywords:

air, NO, CO2, chlorocarbons, chemistry, measurement methods, troposphere., RFA, Scientific Discipline, Air, Environmental Chemistry, air toxics, climate change, Ecology and Ecosystems, tropospheric ozone, Atmospheric Sciences, monitoring, ambient ozone data, ozone occurrence, chemical composition, chemical transport model, gas chromatography, atmospheric chemical cycles, chemical kinetics, carbon dioxide, diode laser spectrometer, atmospheric monitoring, field measurements, lightweight instrumentation, measurement methods , three dimensional model, convective boundary layer, trace gas measurement

Relevant Websites:

http://cloud1.arc.nasa.gov/solve/

Progress and Final Reports:

  • 1997 Progress Report
  • 1998 Progress Report
  • 1999 Progress Report
  • 2000 Progress Report
  • Final