Conduct Research and Monitoring That Contributes to a Better Understanding of the Measurement, Sources, Size Distribution, Chemical Composition, Physical State, Spatial and Temporal Variability, and Health Effects of Suspended PM in the Los Angeles Basin (LAB)

EPA Grant Number: R827352C017
Subproject: this is subproject number 017 , established and managed by the Center Director under grant R827352
(EPA does not fund or establish subprojects; EPA awards and manages the overall grant for this center).

Center: Southern California Particle Center and Supersite
Center Director: Froines, John R.
Title: Conduct Research and Monitoring That Contributes to a Better Understanding of the Measurement, Sources, Size Distribution, Chemical Composition, Physical State, Spatial and Temporal Variability, and Health Effects of Suspended PM in the Los Angeles Basin (LAB)
Investigators: Sioutas, Constantinos , Cho, Arthur K. , Froines, John R. , Hinds, William C. , Miguel, Antonio , Nel, Andre E.
Institution: University of Southern California , University of California - Los Angeles
EPA Project Officer: Hunt, Sherri
Project Period: June 1, 1999 through May 31, 2005 (Extended to May 31, 2006)
RFA: Airborne Particulate Matter (PM) Centers (1999) RFA Text |  Recipients Lists
Research Category: Air Quality and Air Toxics , Particulate Matter , Air

Objective:

The overall objective of this project is to conduct research and monitoring that contributes to a better understanding of the measurement, sources, size distribution, chemical composition, physical state, spatial and temporal variability, and health effects of suspended particulate matter (PM) in the Los Angeles Basin (LAB). Intensive aerosol measurements, well beyond the traditional PM2.5 mass, sulfate and nitrate concentrations, were conducted in several areas of the Los Angeles Basin. These included particle number concentrations, size distributions, and detailed PM chemical composition as a function of particle size. Sampling locations were chosen to provide wide geographical and seasonal coverage, including urban “source” sites and downwind “receptor” sites. Intensive PM measurements were also conducted up and downwind of several freeways of the LAB, to characterize near-roadway exposure environments and to support several in vivo and in vitro health studies.

Supplemental Keywords:

RFA, Health, Scientific Discipline, Air, particulate matter, Environmental Chemistry, Air Pollutants, Risk Assessments, Biochemistry, Atmospheric Sciences, ambient aerosol, particulates, human health effects, toxicology, ambient measurement methods, air pollution, human exposure, toxicity, particulate exposure, aerosol composition, allergens, aerosols, atmospheric chemistry, human health risk, particle transport, particle concentrator, particle size measurement

Progress and Final Reports:

  • 1999
  • 2000
  • 2001
  • 2002
  • 2003
  • 2004 Progress Report
  • Final

  • Main Center Abstract and Reports:

    R827352    Southern California Particle Center and Supersite

    Subprojects under this Center: (EPA does not fund or establish subprojects; EPA awards and manages the overall grant for this center).
    R827352C001 The Chemical Toxicology of Particulate Matter
    R827352C002 Pro-inflammatory and the Pro-oxidative Effects of Diesel Exhaust Particulate in Vivo and in Vitro
    R827352C003 Measurement of the “Effective” Surface Area of Ultrafine and Accumulation Mode PM (Pilot Project)
    R827352C004 Effect of Exposure to Freeways with Heavy Diesel Traffic and Gasoline Traffic on Asthma Mouse Model
    R827352C005 Effects of Exposure to Fine and Ultrafine Concentrated Ambient Particles near a Heavily Trafficked Freeway in Geriatric Rats (Pilot Project)
    R827352C006 Relationship Between Ultrafine Particle Size Distribution and Distance From Highways
    R827352C007 Exposure to Vehicular Pollutants and Respiratory Health
    R827352C008 Traffic Density and Human Reproductive Health
    R827352C009 The Role of Quinones, Aldehydes, Polycyclic Aromatic Hydrocarbons, and other Atmospheric Transformation Products on Chronic Health Effects in Children
    R827352C010 Novel Method for Measurement of Acrolein in Aerosols
    R827352C011 Off-Line Sampling of Exhaled Nitric Oxide in Respiratory Health Surveys
    R827352C012 Controlled Human Exposure Studies with Concentrated PM
    R827352C013 Particle Size Distributions of Polycyclic Aromatic Hydrocarbons in the LAB
    R827352C014 Physical and Chemical Characteristics of PM in the LAB (Source Receptor Study)
    R827352C015 Exposure Assessment and Airshed Modeling Applications in Support of SCPC and CHS Projects
    R827352C016 Particle Dosimetry
    R827352C017 Conduct Research and Monitoring That Contributes to a Better Understanding of the Measurement, Sources, Size Distribution, Chemical Composition, Physical State, Spatial and Temporal Variability, and Health Effects of Suspended PM in the Los Angeles Basin (LAB)