Effect of Exposure to Freeways with Heavy Diesel Traffic and Gasoline Traffic on Asthma Mouse Model

EPA Grant Number: R827352C004
Subproject: this is subproject number 004 , established and managed by the Center Director under grant R827352
(EPA does not fund or establish subprojects; EPA awards and manages the overall grant for this center).

Center: Southern California Particle Center and Supersite
Center Director: Froines, John R.
Title: Effect of Exposure to Freeways with Heavy Diesel Traffic and Gasoline Traffic on Asthma Mouse Model
Investigators: Kleinman, Michael T. , Cho, Arthur K. , Froines, John R. , Miguel, Antonio , Sioutas, Constantinos
Current Investigators: Kleinman, Michael T. , Cho, Arthur K. , Froines, John R. , Sioutas, Constantinos
Institution: University of California - Irvine , Michigan State University , University of California - Los Angeles , University of Southern California
Current Institution: University of California - Irvine , University of California - Los Angeles , University of Southern California
EPA Project Officer: Chung, Serena
Project Period: June 1, 1999 through May 31, 2005 (Extended to May 31, 2006)
RFA: Airborne Particulate Matter (PM) Centers (1999) RFA Text |  Recipients Lists
Research Category: Air Quality and Air Toxics , Particulate Matter , Air

Objective:

The overall objective of this research project is to focus on the central hypothesis of the Southern California Particle Center and Supersite, which is that organic constituents associated with particulate matter—including quinones, other organic compounds (polycyclic aromatic hydrocarbons [PAHs], nitro-PAHs, and aldehydes/ketones), and metals—are capable of generating reactive oxygen species and acting as electrophilic agents. They have a central role in allergic airway disease such as asthma and cardiovascular effects through their ability to generate oxidative stress, inflammation, and immunomodulating effects in the lungs and airways.

The specific objectives of this research project are to: (1) determine whether exposure to ultrafine and fine particles increases allergic responses in mice at varying distances from freeways; (2) demonstrate that fine and ultrafine concentrated ambient particles (CAPs) can act as an adjuvant in the development or exacerbation of airway allergic reactions and inflammation; and (3) identify components of ultrafine or fine ambient particles that might cause these responses.

Supplemental Keywords:

particulate matter, quinones, PAHs, aldehydes, ketones, metals, allergic airway disease, human health risk, asthma, mobile source emissions modeling, diesel exhaust particles, concentrated ambient particles (CAPs), California, freeway study,, RFA, Health, Scientific Discipline, Air, Geographic Area, HUMAN HEALTH, particulate matter, Environmental Chemistry, Air Pollutants, State, Risk Assessments, Biochemistry, Health Effects, asthma, particulates, ambient aerosol, toxicology, quinones, human health effects, animal model, airway disease, allergic airway disease, diesel exhaust particulates, air pollution, PAH, diesel exhaust, particulate exposure, human exposure, toxicity, California (CA), allergens, particle concentrator, airborne urban contaminants, human health risk, aerosols, atmospheric chemistry

Progress and Final Reports:

  • 1999
  • 2000
  • 2001
  • 2002 Progress Report
  • 2003
  • 2004
  • Final Report

  • Main Center Abstract and Reports:

    R827352    Southern California Particle Center and Supersite

    Subprojects under this Center: (EPA does not fund or establish subprojects; EPA awards and manages the overall grant for this center).
    R827352C001 The Chemical Toxicology of Particulate Matter
    R827352C002 Pro-inflammatory and the Pro-oxidative Effects of Diesel Exhaust Particulate in Vivo and in Vitro
    R827352C003 Measurement of the “Effective” Surface Area of Ultrafine and Accumulation Mode PM (Pilot Project)
    R827352C004 Effect of Exposure to Freeways with Heavy Diesel Traffic and Gasoline Traffic on Asthma Mouse Model
    R827352C005 Effects of Exposure to Fine and Ultrafine Concentrated Ambient Particles near a Heavily Trafficked Freeway in Geriatric Rats (Pilot Project)
    R827352C006 Relationship Between Ultrafine Particle Size Distribution and Distance From Highways
    R827352C007 Exposure to Vehicular Pollutants and Respiratory Health
    R827352C008 Traffic Density and Human Reproductive Health
    R827352C009 The Role of Quinones, Aldehydes, Polycyclic Aromatic Hydrocarbons, and other Atmospheric Transformation Products on Chronic Health Effects in Children
    R827352C010 Novel Method for Measurement of Acrolein in Aerosols
    R827352C011 Off-Line Sampling of Exhaled Nitric Oxide in Respiratory Health Surveys
    R827352C012 Controlled Human Exposure Studies with Concentrated PM
    R827352C013 Particle Size Distributions of Polycyclic Aromatic Hydrocarbons in the LAB
    R827352C014 Physical and Chemical Characteristics of PM in the LAB (Source Receptor Study)
    R827352C015 Exposure Assessment and Airshed Modeling Applications in Support of SCPC and CHS Projects
    R827352C016 Particle Dosimetry
    R827352C017 Conduct Research and Monitoring That Contributes to a Better Understanding of the Measurement, Sources, Size Distribution, Chemical Composition, Physical State, Spatial and Temporal Variability, and Health Effects of Suspended PM in the Los Angeles Basin (LAB)