Effects of Climate Change on Human Health: Current and Future Impacts

EPA Grant Number: R832751
Title: Effects of Climate Change on Human Health: Current and Future Impacts
Investigators: Hanna, Adel , Arunachalam, Sarav , Henderson, Fred , Robinson, Peter , Smith, Richard , Xiu, Aijun , Yeatts, Karin B. , Zhu, Zhengyuan
Current Investigators: Hanna, Adel , Henderson, Fred , Robinson, Peter , Smith, Richard , Xiu, Aijun , Yeatts, Karin B. , Zhu, Zhengyuan
Institution: University of North Carolina at Chapel Hill
EPA Project Officer: Hunt, Sherri
Project Period: January 1, 2006 through December 31, 2008 (Extended to December 31, 2010)
Project Amount: $599,103
RFA: The Impact of Climate Change & Variability on Human Health (2005) RFA Text |  Recipients Lists
Research Category: Health Effects , Global Climate Change , Health , Climate Change


In this project we examine how climatic variations and the corresponding air quality conditions may aggravate heat- and cold-related morbidity among adults and vulnerable populations: in particular, the poor, the aging and children. We will demonstrate our analysis in the state of North Carolina. North Carolina displays substantial variability in weather (mountains to seaboard), population density (rural versus urban/suburban), and regional patterns of land use (urban/suburban versus forest versus agricultural).


The overall goal of the proposed research project is to define more precisely the interrelationships among (a) changes in climate and meteorological conditions, (b) air pollution, and (c) heat- and cold-related morbidity severe enough to warrant clinical contact. A secondary goal is to evaluate heat-related morbidity in a vulnerable population: children and adults under economic disadvantage. We propose a novel approach that views climate trends and the associated weather in terms of eight identified air-mass/weather types. We hypothesize that such air masses and the corresponding air quality conditions will have different health impacts on humans, which can be quantified based on statistical analyses of the correlates among the meteorological, climate, air quality, and health data.


Our work will consist of the following steps: (1) Characterize weather patterns and circulation types over the state of North Carolina; (2) examine temporal and regional variability in meteorological and climatological patterns of the state of North Carolina to identify abnormalities related to climate fluctuation, including weather patterns related to events such as El Niño, and to describe their relationship to air pollution; (3) identify meteorological and climatological correlates of variability in air pollution across the state’s highly variable geographic regions over a period of ten years to define the year-to-year reproducibility of the meteorological – air pollution relationship, and to assess changing trends in the relationship over time; (4) establish two mordibity databases, one of hospitalizations for cardiovascular disease, asthma, heat syncope and influenza among all North Carolina residents, and a second database of emergency room visits, physician visits, and costs for the same disease outcomes for Medicaid recipients; (5) address the potential mismatch in the scale of climate, air quality and health data bases to insure the validity of the statistical correlations among various parameters; (6) correlate the occurrence of health data with changes in meteorological and air quality parameters to define the relative risk and attributable fraction of asthma and cardiovascular morbidity in relation to air pollution; (7) apply these predictive statistical models to three geographic regions within the state (mountains, Piedmont and coastal plain) to determine whether the relationship between climate changes and heat- and cold-related morbidity varies in different geographic frameworks (e.g., urban vs. rural agricultural vs. rural non-agricultural areas); (8) examine the use of the global climate and air quality modeling systems to address future regional health impacts of climate variations; and (9) provide an assessment of uncertainty in quantifying the potential impact of climate variability on health using the proposed data and modeling analyses.:

Expected Results:

We anticipate that the characteristics of the climate – air pollution relationship across North Carolina over time will be generalizable throughout the US, and that our proposed study will yield important insights regarding the impact of climate change and air pollution on heat- and cold-related morbidity, thus advancing our knowledge of the health effects of climate change and their predictability. Findings on applying environmental and climate data to decrease heat- and cold-related morbidity could result in a substantial public health impact, not just in North Carolina but throughout the United States

Publications and Presentations:

Publications have been submitted on this project: View all 11 publications for this project

Journal Articles:

Journal Articles have been submitted on this project: View all 1 journal articles for this project

Supplemental Keywords:

Global Climate, Air Quality , Human Health, Epidemiology, Modeling, Climate Models, Southeast,, RFA, Health, Scientific Discipline, Air, Health Risk Assessment, climate change, Air Pollution Effects, Risk Assessments, Biochemistry, Environmental Monitoring, Ecological Risk Assessment, Atmosphere, air quality modeling, morbidity, air pollution, human exposure, climate models, human dimension, human health risk, land use, statistical methods

Progress and Final Reports:

2006 Progress Report
2007 Progress Report
2008 Progress Report
2009 Progress Report
Final Report