Development of Pollutant Fate and Transport Models for Use in Terrestrial Ecosystem Exposure Assessment

EPA Grant Number: R825433C051
Subproject: this is subproject number 051 , established and managed by the Center Director under grant R825433
(EPA does not fund or establish subprojects; EPA awards and manages the overall grant for this center).

Center: EERC - Center for Ecological Health Research (Cal Davis)
Center Director: Rolston, Dennis E.
Title: Development of Pollutant Fate and Transport Models for Use in Terrestrial Ecosystem Exposure Assessment
Investigators: Rolston, Dennis E.
Institution: University of California - Davis
EPA Project Officer: Levinson, Barbara
Project Period: October 1, 1996 through September 30, 2000
RFA: Exploratory Environmental Research Centers (1992) RFA Text |  Recipients Lists
Research Category: Center for Ecological Health Research , Targeted Research

Objective:

This project seeks to develop pollutant fate and transport models to be used as tools for assessing exposure in terrestrial ecosystems, investigate the fate of soil-applied chemicals, and estimate potential exposure levels in the atmosphere, soil, and aqueous phases in the shallow vadose zone.

Approach:

The investigators are working on models that will provide researchers in the Sacramento River Watershed project with scenarios of the most significant exposure routes of chemicals in agroecosystems to the birds, small mammals, and aquatic species being studied. They are building upon existing fate and transport models of chemical movement in soil. The modeling will also allow them to evaluate the most important processes requiring further experimental investigation. This includes research in the area of chemical adsorption kinetics, chemical volatilization processes from soil to the atmosphere, and routes of transport to surface water and ground water.

Volatilization of pesticides from soil is one of the key processes for transporting chemicals to non-target areas. Research focused on how water status and water transport in the soil affect volatilization of pesticides. Volatilization of soil-incorporated diazinon [O, O diethyl O-(2-isopropyl-4-methyl-6-pyrimidinyl) phosphorothioate] was measured under various water status and water transport conditions in the field at a site near the Davis campus. Using soil of different initial water content varied these conditions. Diazinon was sprayed on the soil surface at rates consistent with grower applications. The volatilization of diazinon vapor from the soil surface was measured using a newly developed, steady-state chamber system. The chamber was placed over the soil surface for 1-hour intervals for several times during the day and evening hours in August. The new chamber was capable of measuring small diazinon volatilization rates. Diazinon volatilization increased substantially as soil temperature increased and was accelerated due to the appreciable upward water flow. When upward water flow was insufficient, soil-water content at the soil surface was quickly reduced below a threshold, and diazinon volatilization started to decrease exponentially due to diazinon adsorption on dry soil surfaces.

A numerical model was developed to simulate pesticide transport and volatilization from both wet and dry soils. The calculated and measured results agreed only if photodegradation of diazinon on the surface soil was added to the model. More research is required to develop a quantitative understanding of photodegradation on the surface of soils.

Agricultural soils have been recognized as a significant source of nitric oxide (NO) and nitrous oxide (N2O), which are important trace gases involved in several critical processes in the atmosphere. Nitric oxide is a precursor to nitric acid, and plays a central role in photochemical reactions, which regulate levels of tropospheric ozone. Ozone can have detrimental effects on plants upon extended exposure at fairly low levels. Ozone damage to forests in the Sierra Nevada mountains are considered to be one of the stressors potentially causing premature tree death. Laboratory experiments were conducted with three agricultural soils to examine substrate and process controls over temporal variability of NO and N2O production during nitrification, and to quantify the kinetics of HNO2-mediated chemical reactions. Gross NO production rates were highly correlated with calculated concentrations of HNO2, which were shown to originate from autotrophic microbial oxidation of NH4 to nitrite. Data suggests that even during periods of relatively low nitrite accumulation and rapid overall nitrification, HNO2-mediated reactions may have been the primary source of NO. Two papers have been published on this research.

To provide the capability of predicting NO emission from soils, a numerical simulation model of all the relevant processes was developed. Although fairly data intensive, this model offers the possibility of being able to more accurately predict NO emissions from land under various management and environmental conditions. One paper has been published on the modeling results.

Expected Results:

Interactions with the investigators of the Sacramento River Watershed project are expected to continue and an evaluation of data sets that may be appropriate for testing and validating the combined transport and fate model. Close interaction with researchers involved in the Sacramento River Watershed project will ensure that the model will provide results that can be used directly in exposure estimates. One of the goals is to see if these models may be useful in predicting the spatial and temporal quantities of pesticides entering the Sacramento River.

Investigators also plan to continue basic research on production and emission of nitric oxide (NO) from soils in cooperation with investigators in New York. In this regard, this research will support ongoing research in the Sierra Nevada Watershed Project on the sources of ozone and its subsequent transport into the forests of the Sierra Nevada Mountains. We will use these data to continue to test a simulation model of the formation and transport of NO in soil and emission from soils into the atmosphere.

Supplemental Keywords:

Watershed, fate and transport, modeling, ecosystem stress, pesticides, nitric oxide, Sacramento River, hydrologic model, California., RFA, Scientific Discipline, INTERNATIONAL COOPERATION, Waste, Water, ECOSYSTEMS, Ecosystem Protection/Environmental Exposure & Risk, Aquatic Ecosystems & Estuarine Research, Water & Watershed, Restoration, Aquatic Ecosystem, Fate & Transport, Monitoring/Modeling, Environmental Microbiology, Biochemistry, Terrestrial Ecosystems, Ecology and Ecosystems, Aquatic Ecosystem Restoration, Watersheds, fate and transport, aquatic, watershed management, ambient particle properties, water circulation, ecosystem assessment, Sacramento River, sediment transport, pesticides, restoration strategies, modeling, Clear Lake, watershed influences, hydrology, wetland restoration, integrated watershed model, chemical kinetics, aquatic ecosystems, environmental stress, source load modeling, watershed sustainablility, material transport, groundwater contamination, ecosystem stress, ecology assessment models, ecological impact, agrochemicals, ecological research, watershed restoration

Progress and Final Reports:

1999 Progress Report
2000 Progress Report
Final Report


Main Center Abstract and Reports:

R825433    EERC - Center for Ecological Health Research (Cal Davis)

Subprojects under this Center: (EPA does not fund or establish subprojects; EPA awards and manages the overall grant for this center).
R825433C001 Potential for Long-Term Degradation of Wetland Water Quality Due to Natural Discharge of Polluted Groundwater
R825433C002 Sacramento River Watershed
R825433C003 Endocrine Disruption in Fish and Birds
R825433C004 Biomarkers of Exposure and Deleterious Effect: A Laboratory and Field Investigation
R825433C005 Fish Developmental Toxicity/Recruitment
R825433C006 Resolving Multiple Stressors by Biochemical Indicator Patterns and their Linkages to Adverse Effects on Benthic Invertebrate Patterns
R825433C007 Environmental Chemistry of Bioavailability in Sediments and Water Column
R825433C008 Reproduction of Birds and mammals in a terrestrial-aquatic interface
R825433C009 Modeling Ecosystems Under Combined Stress
R825433C010 Mercury Uptake by Fish
R825433C011 Clear Lake Watershed
R825433C012 The Role of Fishes as Transporters of Mercury
R825433C013 Wetlands Restoration
R825433C014 Wildlife Bioaccumulation and Effects
R825433C015 Microbiology of Mercury Methylation in Sediments
R825433C016 Hg and Fe Biogeochemistry
R825433C017 Water Motions and Material Transport
R825433C018 Economic Impacts of Multiple Stresses
R825433C019 The History of Anthropogenic Effects
R825433C020 Wetland Restoration
R825433C021 Sierra Nevada Watershed Project
R825433C022 Regional Transport of Air Pollutants and Exposure of Sierra Nevada Forests to Ozone
R825433C023 Biomarkers of Ozone Damage to Sierra Nevada Vegetation
R825433C024 Effects of Air Pollution on Water Quality: Emission of MTBE and Other Pollutants From Motorized Watercraft
R825433C025 Regional Movement of Toxics
R825433C026 Effect of Photochemical Reactions in Fog Drops and Aerosol Particles on the Fate of Atmospheric Chemicals in the Central Valley
R825433C027 Source Load Modeling for Sediment in Mountainous Watersheds
R825433C028 Stress of Increased Sediment Loading on Lake and Stream Function
R825433C029 Watershed Response to Natural and Anthropogenic Stress: Lake Tahoe Nutrient Budget
R825433C030 Mercury Distribution and Cycling in Sierra Nevada Waterbodies
R825433C031 Pre-contact Forest Structure
R825433C032 Identification and distribution of pest complexes in relation to late seral/old growth forest structure in the Lake Tahoe watershed
R825433C033 Subalpine Marsh Plant Communities as Early Indicators of Ecosystem Stress
R825433C034 Regional Hydrogeology and Contaminant Transport in a Sierra Nevada Ecosystem
R825433C035 Border Rivers Watershed
R825433C036 Toxicity Studies
R825433C037 Watershed Assessment
R825433C038 Microbiological Processes in Sediments
R825433C039 Analytical and Biomarkers Core
R825433C040 Organic Analysis
R825433C041 Inorganic Analysis
R825433C042 Immunoassay and Serum Markers
R825433C043 Sensitive Biomarkers to Detect Biochemical Changes Indicating Multiple Stresses Including Chemically Induced Stresses
R825433C044 Molecular, Cellular and Animal Biomarkers of Exposure and Effect
R825433C045 Microbial Community Assays
R825433C046 Cumulative and Integrative Biochemical Indicators
R825433C047 Mercury and Iron Biogeochemistry
R825433C048 Transport and Fate Core
R825433C049 Role of Hydrogeologic Processes in Alpine Ecosystem Health
R825433C050 Regional Hydrologic Modeling With Emphasis on Watershed-Scale Environmental Stresses
R825433C051 Development of Pollutant Fate and Transport Models for Use in Terrestrial Ecosystem Exposure Assessment
R825433C052 Pesticide Transport in Subsurface and Surface Water Systems
R825433C053 Currents in Clear Lake
R825433C054 Data Integration and Decision Support Core
R825433C055 Spatial Patterns and Biodiversity
R825433C056 Modeling Transport in Aquatic Systems
R825433C057 Spatial and Temporal Trends in Water Quality
R825433C058 Time Series Analysis and Modeling Ecological Risk
R825433C059 WWW/Outreach
R825433C060 Economic Effects of Multiple Stresses
R825433C061 Effects of Nutrients on Algal Growth
R825433C062 Nutrient Loading
R825433C063 Subalpine Wetlands as Early Indicators of Ecosystem Stress
R825433C064 Chlorinated Hydrocarbons
R825433C065 Sierra Ozone Studies
R825433C066 Assessment of Multiple Stresses on Soil Microbial Communities
R825433C067 Terrestrial - Agriculture
R825433C069 Molecular Epidemiology Core
R825433C070 Serum Markers of Environmental Stress
R825433C071 Development of Sensitive Biomarkers Based on Chemically Induced Changes in Expressions of Oncogenes
R825433C072 Molecular Monitoring of Microbial Populations
R825433C073 Aquatic - Rivers and Estuaries
R825433C074 Border Rivers - Toxicity Studies