Remediation of Soils Contaminated with Wood-Treatment Chemicals (PCP and Creosote)

EPA Grant Number: R825549C056
Subproject: this is subproject number 056 , established and managed by the Center Director under grant R825549
(EPA does not fund or establish subprojects; EPA awards and manages the overall grant for this center).

Center: HSRC (1989) - Great Plains/Rocky Mountain HSRC
Center Director: Erickson, Larry E.
Title: Remediation of Soils Contaminated with Wood-Treatment Chemicals (PCP and Creosote)
Investigators: Bajpai, Rakesh K. , Banerji, Shankha K. , Puri, Ravi , Zappi, Mark E.
Institution: University of Missouri - Columbia , Missouri University of Science and Technology
EPA Project Officer: Hahn, Intaek
Project Period: May 18, 1995 through May 17, 1996
RFA: Hazardous Substance Research Centers - HSRC (1989) RFA Text |  Recipients Lists
Research Category: Organic Chemical Contamination of Soil/Water , Land and Waste Management

Objective:

The goal of this project is to develop a slurry biotreatment process for soils contaminated with Pentachlorophenol (PCP) and creosote.

Approach:

Engineering and process development aspects of bioslurry treatment of PCP- and creosote-contaminated soils from a Superfund site will be studied in this project in shake flasks and in 14-liter well-instrumented fermentors. Use of surfactants and cosolvents will be explored in order to enhance aqueous solubility of hydrophobic and sparingly soluble contaminants. The effect of cosolvents on microbial activity will be studied. Kinetic studies for biodegradation of PCP and PAHs will be carried out in sealed bioreactors. Experiments are planned to investigate the role of surfactant/cosolvent, temperature, carbon source, and oxygen delivery by sparging of pure oxygen in reduction of concentrations of PAHs and PCP in the contaminated soil slurry. Reactors with power measurement devices will be used to investigate several different types of mechanical agitators in order to keep the solids in suspension. The power requirement under aerated and unaerated conditions will be correlated with geometrical and system parameters such as particle size, nature of soil, solid density, and physical dimensions in the reactor. Oxygen transfer rate and oxygen transfer efficiency in the slurries with sufficient power input for minimal and complete suspension will also be studied in this reactor. All of the information will be used to develop a flow diagram of the bioslurry treatment process for cleanup of contaminated sites and to generate cost data that may be used to determine cost-effectiveness of this process for field-scale treatment.

Expected Results:

It is anticipated that the information gained as a result of the above experiments will be used to develop a flow diagram of the bioslurry treatment process for cleanup of contaminated sites and to generate cost data that may be used to determine cost-effectiveness of this process for field-scale treatment.

Publications and Presentations:

Publications have been submitted on this subproject: View all 4 publications for this subprojectView all 904 publications for this center

Supplemental Keywords:

soil, PCP, creosote, slurry bioreactor, wood treatment., Scientific Discipline, Toxics, Waste, Water, Ecosystem Protection/Environmental Exposure & Risk, Contaminated Sediments, Environmental Chemistry, Geochemistry, pesticides, Fate & Transport, Analytical Chemistry, Bioremediation, Ecology and Ecosystems, fate and transport, contaminant transport, PCP, migration, biodegradation, contaminated sediment, adsorption, biotechnology, contaminants in soil, bioremediation of soils, chemical kinetics, slurry biotreatment, agrochemicals, contaminated soils, Pentachlorophenol, creosote

Progress and Final Reports:

  • Final Report

  • Main Center Abstract and Reports:

    R825549    HSRC (1989) - Great Plains/Rocky Mountain HSRC

    Subprojects under this Center: (EPA does not fund or establish subprojects; EPA awards and manages the overall grant for this center).
    R825549C006 Fate of Trichloroethylene (TCE) in Plant/Soil Systems
    R825549C007 Experimental Study of Stabilization/Solidification of Hazardous Wastes
    R825549C008 Modeling Dissolved Oxygen, Nitrate and Pesticide Contamination in the Subsurface Environment
    R825549C009 Vadose Zone Decontamination by Air Venting
    R825549C010 Thermochemical Treatment of Hazardous Wastes
    R825549C011 Development, Characterization and Evaluation of Adsorbent Regeneration Processes for Treament of Hazardous Waste
    R825549C012 Computer Method to Estimate Safe Level Water Quality Concentrations for Organic Chemicals
    R825549C013 Removal of Nitrogenous Pesticides from Rural Well-Water Supplies by Enzymatic Ozonation Process
    R825549C014 The Characterization and Treatment of Hazardous Materials from Metal/Mineral Processing Wastes
    R825549C015 Adsorption of Hazardous Substances onto Soil Constituents
    R825549C016 Reclamation of Metal and Mining Contaminated Superfund Sites using Sewage Sludge/Fly Ash Amendment
    R825549C017 Metal Recovery and Reuse Using an Integrated Vermiculite Ion Exchange - Acid Recovery System
    R825549C018 Removal of Heavy Metals from Hazardous Wastes by Protein Complexation for their Ultimate Recovery and Reuse
    R825549C019 Development of In-situ Biodegradation Technology
    R825549C020 Migration and Biodegradation of Pentachlorophenol in Soil Environment
    R825549C021 Deep-Rooted Poplar Trees as an Innovative Treatment Technology for Pesticide and Toxic Organics Removal from Soil and Groundwater
    R825549C022 In-situ Soil and Aquifer Decontaminaiton using Hydrogen Peroxide and Fenton's Reagent
    R825549C023 Simulation of Three-Dimensional Transport of Hazardous Chemicals in Heterogeneous Soil Cores Using X-ray Computed Tomography
    R825549C024 The Response of Natural Groundwater Bacteria to Groundwater Contamination by Gasoline in a Karst Region
    R825549C025 An Electrochemical Method for Acid Mine Drainage Remediation and Metals Recovery
    R825549C026 Sulfide Size and Morphology Identificaiton for Remediation of Acid Producing Mine Wastes
    R825549C027 Heavy Metals Removal from Dilute Aqueous Solutions using Biopolymers
    R825549C028 Neutron Activation Analysis for Heavy Metal Contaminants in the Environment
    R825549C029 Reducing Heavy Metal Availability to Perennial Grasses and Row-Crops Grown on Contaminated Soils and Mine Spoils
    R825549C030 Alachlor and Atrazine Losses from Runoff and Erosion in the Blue River Basin
    R825549C031 Biodetoxification of Mixed Solid and Hazardous Wastes by Staged Anaerobic Fermentation Conducted at Separate Redox and pH Environments
    R825549C032 Time Dependent Movement of Dioxin and Related Compounds in Soil
    R825549C033 Impact of Soil Microflora on Revegetation Efforts in Southeast Kansas
    R825549C034 Modeling the use of Plants in Remediation of Soil and Groundwater Contaminated by Hazardous Organic Substances
    R825549C035 Development of Electrochemical Processes for Improved Treatment of Lead Wastes
    R825549C036 Innovative Treatment and Bank Stabilization of Metals-Contaminated Soils and Tailings along Whitewood Creek, South Dakota
    R825549C037 Formation and Transformation of Pesticide Degradation Products Under Various Electron Acceptor Conditions
    R825549C038 The Effect of Redox Conditions on Transformations of Carbon Tetrachloride
    R825549C039 Remediation of Soil Contaminated with an Organic Phase
    R825549C040 Intelligent Process Design and Control for the Minimization of Waste Production and Treatment of Hazardous Waste
    R825549C041 Heavy Metals Removal from Contaminated Water Solutions
    R825549C042 Metals Soil Pollution and Vegetative Remediation
    R825549C043 Fate and Transport of Munitions Residues in Contaminated Soil
    R825549C044 The Role of Metallic Iron in the Biotransformation of Chlorinated Xenobiotics
    R825549C045 Use of Vegetation to Enhance Bioremediation of Surface Soils Contaminated with Pesticide Wastes
    R825549C046 Fate and Transport of Heavy Metals and Radionuclides in Soil: The Impacts of Vegetation
    R825549C047 Vegetative Interceptor Zones for Containment of Heavy Metal Pollutants
    R825549C048 Acid-Producing Metalliferous Waste Reclamation by Material Reprocessing and Vegetative Stabilization
    R825549C049 Laboratory and Field Evaluation of Upward Mobilization and Photodegradation of Polychlorinated Dibenzo-P-Dioxins and Furans in Soil
    R825549C050 Evaluation of Biosparging Performance and Process Fundamentals for Site Remediation
    R825549C051 Field Scale Bioremediation: Relationship of Parent Compound Disappearance to Humification, Mineralization, Leaching, Volatilization of Transformaiton Intermediates
    R825549C052 Chelating Extraction of Heavy Metals from Contaminated Soils
    R825549C053 Application of Anaerobic and Multiple-Electron-Acceptor Bioremediation to Chlorinated Aliphatic Subsurface Contamination
    R825549C054 Application of PGNAA Remote Sensing Methods to Real-Time, Non-Intrusive Determination of Contaminant Profiles in Soils
    R825549C055 Design and Development of an Innovative Industrial Scale Process to Economically Treat Waste Zinc Residues
    R825549C056 Remediation of Soils Contaminated with Wood-Treatment Chemicals (PCP and Creosote)
    R825549C057 Effects of Surfactants on the Bioavailability and Biodegradation of Contaminants in Soils
    R825549C058 Contaminant Binding to the Humin Fraction of Soil Organic Matter
    R825549C059 Identifying Ground-Water Threats from Improperly Abandoned Boreholes
    R825549C060 Uptake of BTEX Compounds by Hybrid Poplar Trees in Hazardous Waste Remediation
    R825549C061 Biofilm Barriers for Waste Containment
    R825549C062 Plant Assisted Remediation of Soil and Groundwater Contaminated by Hazardous Organic Substances: Experimental and Modeling Studies
    R825549C063 Extension of Laboratory Validated Treatment and Remediation Technologies to Field Problems in Aquifer Soil and Water Contamination by Organic Waste Chemicals