2002 Progress Report: Examining Conditions That Predispose Towards Acute Adverse Effects of Particulate Exposures

EPA Grant Number: R827353C004
Subproject: this is subproject number 004 , established and managed by the Center Director under grant R827353
(EPA does not fund or establish subprojects; EPA awards and manages the overall grant for this center).

Center: Harvard Particle Center
Center Director: Koutrakis, Petros
Title: Examining Conditions That Predispose Towards Acute Adverse Effects of Particulate Exposures
Investigators: Schwartz, Joel
Current Investigators: Schwartz, Joel , O'Neill, M. , Wellenius, Gregory , Zanobetti, Antonella
Institution: Harvard T.H. Chan School of Public Health , Harvard University
EPA Project Officer: Chung, Serena
Project Period: June 1, 1999 through May 31, 2005 (Extended to May 31, 2006)
Project Period Covered by this Report: June 1, 2002 through May 31, 2003
Project Amount: Refer to main center abstract for funding details.
RFA: Airborne Particulate Matter (PM) Centers (1999) RFA Text |  Recipients Lists
Research Category: Air Quality and Air Toxics , Particulate Matter , Air

Objective:

The main objective of this research project is to test the hypothesis that patients with pre-existing respiratory, cardiovascular, or diabetic conditions have an enhanced mortality response to particle exposures. In addition, it will separately assess the effects of gaseous co-pollutants as alternative predictors of mortality and the degree to which they modify response to particulate matter.

Progress Summary:

Several projects on susceptibility have already been completed, suggesting that individuals with cardiovascular disease and diabetes are at higher risk from exposure to PM. Among the published papers dealing with this issue are: Bateson and Schwartz, 1999; Braga, et al., 2000; Coull, et al., 2001; Ha, et al., 2001; Zanobetti and Schwartz, 2000. Currently, data from five clinical trials from the Joslin Diabetes Center and Beth Israel/Deaconess Medical Center are being prepared to investigate associations between PM and endothelial function and blood markers of inflammation among diabetics.

Furthermore, we have conducted mortality followups of subjects whose potentially predisposing conditions were identified for use in hospital admissions data. These analyses will use the case-crossover approach. We recently have completed a methodological paper examining the potential for bias and confounding in that approach, and developed new statistical methods to address these problems (Bateson and Saldiva, 2001; Bateson and Schwartz, 1999). The newly developed methods estimate and subtract biases from health risk estimates. We also have conducted simulations showing our method has correct coverage probabilities (Bateson and Schwartz, in review, 2003).

References:

Bateson T, Schwartz J. Control for seasonal variation and time trend in case-crossover studies of acute effects of environmental exposures. Epidemiology 1999;54:596-605.

Coull BA, Schwartz J, Wand MP. Respiratory health and air pollution: additive mixed model analysis. Biostatistics 2001;2:337-349.

Ha E-H, Hong Y-C, Lee B-E, Woo B-H, Schwartz J, Christiani DC. Is air pollution a risk factor for low birth weight in Seoul? Epidemiology 2001;12:643-648.

Lippman M, Frampton M, Schwartz J, Dockery DW, Schlesinger R, Koutrakis P, Froines J. The EPA's Particulate Matter (PM) Health Effects Research Centers Program: a mid-course (2 1/2 year) report of status, progress, and plans. Environmental Health Perspectives (in press, 2003).

Future Activities:

We will continue to assess susceptibility to the effects of particulate matter using newly developed statistical methods.


Journal Articles on this Report : 9 Displayed | Download in RIS Format

Other subproject views: All 34 publications 34 publications in selected types All 33 journal articles
Other center views: All 200 publications 198 publications in selected types All 197 journal articles
Type Citation Sub Project Document Sources
Journal Article Bateson TF, Schwartz J. Selection bias and confounding in case-crossover analyses of environmental time-series data. Epidemiology 2001;12(6):654-661. R827353 (Final)
R827353C004 (2002)
R827353C004 (2003)
R827353C004 (2004)
R827353C004 (Final)
R827353C005 (2001)
R827353C005 (2002)
R827353C005 (2003)
R827353C005 (Final)
  • Abstract from PubMed
  • Full-text: Epidemiology-Full Text HTML
    Exit
  • Abstract: Epidemiology-Abstract
    Exit
  • Other: Epidemiology-Full Text PDF
    Exit
  • Journal Article Braga ALF, Zanobetti A, Schwartz J. The effect of weather on respiratory and cardiovascular deaths in 12 U.S. cities. Environmental Health Perspectives 2002;110(9):859-863. R827353 (Final)
    R827353C004 (2002)
    R827353C004 (2003)
    R827353C004 (Final)
  • Full-text from PubMed
  • Abstract from PubMed
  • Associated PubMed link
  • Full-text: Harvard-Full Text PDF
    Exit
  • Journal Article Braga ALF, Zanobetti A, Schwartz J. The time course of weather-related deaths. Epidemiology 2001;12(6):662-667. R827353 (Final)
    R827353C004 (2002)
    R827353C004 (2003)
    R827353C004 (2004)
    R827353C004 (Final)
  • Abstract from PubMed
  • Full-text: Epidemiology-Full Text HTML
    Exit
  • Abstract: Epidemiology-Abstract
    Exit
  • Other: Epidemiology-Full Text PDF
    Exit
  • Journal Article O'Neill MS. Air conditioning and heat-related health effects. Applied Environmental Science and Public Health 2003;1(1):9-12. R827353 (Final)
    R827353C004 (2002)
    R827353C004 (2003)
    R827353C004 (Final)
    not available
    Journal Article Peters A, Dockery DW, Muller JE, Mittleman MA. Increased particulate air pollution and the triggering of myocardial infarction. Circulation 2001;103(23):2810-2815. R827353 (Final)
    R827353C004 (2002)
    R827353C004 (2003)
    R827353C004 (Final)
  • Abstract from PubMed
  • Full-text: Circulation-Full Text HTML
    Exit
  • Abstract: Circulation-Abstract
    Exit
  • Other: Circulation-Full Text PDF
    Exit
  • Journal Article Zanobetti A, Wand MP, Schwartz J, Ryan LM. Generalized additive distributed lag models:quantifying mortality displacement. Biostatistics 2000;1(3):279-292. R827353 (Final)
    R827353C004 (2000)
    R827353C004 (2002)
    R827353C004 (2003)
    R827353C004 (Final)
  • Abstract from PubMed
  • Full-text: Biostatistics-Full Text PDF
    Exit
  • Abstract: Biostatistics-Abstract
    Exit
  • Journal Article Zanobetti A, Schwartz J, Samoli E, Gryparis A, Touloumi G, Atkinson R, Le Tertre A, Bobros J, Celko M, Goren A, Forsberg B, Michelozzi P, Rabczenko D, Aranguez Ruiz E, Katsouyanni K. The temporal pattern of mortality responses to air pollution:a multicity assessment of mortality displacement. Epidemiology 2002;13(1):87-93. R827353 (Final)
    R827353C004 (2002)
    R827353C004 (2003)
    R827353C004 (Final)
  • Abstract from PubMed
  • Full-text: Epidemiology-Full Text HTML
    Exit
  • Abstract: Epidemiology-Abstract
    Exit
  • Other: Epidemiology-Full Text PDF
    Exit
  • Journal Article Zanobetti A, Schwartz J. Cardiovascular damage by airborne particles:are diabetics more susceptible? Epidemiology 2002;13(5):588-592. R827353 (Final)
    R827353C004 (2001)
    R827353C004 (2002)
    R827353C004 (2003)
    R827353C004 (Final)
    R827353C005 (2003)
    R827353C005 (Final)
  • Abstract from PubMed
  • Full-text: Epidemiology-Full Text HTML
    Exit
  • Abstract: Epidemiology-Abstract
    Exit
  • Other: Epidemiology-Full Text PDF
    Exit
  • Journal Article Zanobetti A, Schwartz J, Samoli E, Gryparis A, Touloumi G, Peacock J, Anderson RH, Le Tertre A, Bobros J, Celko M, Goren A, Forsberg B, Michelozzi P, Rabczenko D, Hoyos SP, Wichmann HE, Katsouyanni K. The temporal pattern of respiratory and heart disease mortality in response to air pollution. Environmental Health Perspectives 2003;111(9):1188-1193. R827353 (Final)
    R827353C004 (2002)
    R827353C004 (2003)
    R827353C004 (Final)
  • Full-text from PubMed
  • Abstract from PubMed
  • Associated PubMed link
  • Supplemental Keywords:

    air pollution, air pollutants, particles, particulates, particulate matter, PM, fine particulates, PM2.5, health effects, PM exposure, cardiovascular disease, respiratory disease, diabetes, susceptible populations, gaseous pollutants, endothelial function, blood markers of inflammation, statistics, statistical methods., RFA, Health, Scientific Discipline, Air, Geographic Area, particulate matter, Toxicology, air toxics, Environmental Chemistry, Epidemiology, State, Risk Assessments, Microbiology, Susceptibility/Sensitive Population/Genetic Susceptibility, Environmental Microbiology, Environmental Monitoring, Children's Health, genetic susceptability, tropospheric ozone, Atmospheric Sciences, Molecular Biology/Genetics, Biology, Environmental Engineering, ambient air quality, health effects, monitoring, risk assessment, sensitive populations, chemical exposure, interindividual variability, molecular epidemiology, particulates, air pollutants, exposure and effects, lung, stratospheric ozone, ambient air monitoring, health risks, cardiopulmonary responses, indoor exposure, human health effects, ambient air, pulmonary disease, developmental effects, epidemelogy, respiratory disease, exposure, biological response, ambient measurement methods, Utah (UT), ambient monitoring, children, lung cancer, air pollution, Massachusetts (MA), particle exposure, biological mechanism , Human Health Risk Assessment, human exposure, inhalation, pulmonary, ambient particle health effects, cardiopulmonary response, particulate exposure, susceptibility, assessment of exposure, Illinois (IL), elderly, inhaled, atmospheric monitoring, human susceptibility, inhalation toxicology, indoor air, epidemeology, environmental health hazard, Connecticut (CT), cardiopulmonary, human health, indoor air quality, inhaled particles, respiratory, dosimetry, genetic susceptibility, air quality, cardiovascular disease

    Relevant Websites:

    http://www.hsph.harvard.edu/epacenter/ Exit

    Progress and Final Reports:

    Original Abstract
  • 1999 Progress Report
  • 2000 Progress Report
  • 2001 Progress Report
  • 2003 Progress Report
  • 2004 Progress Report
  • Final Report

  • Main Center Abstract and Reports:

    R827353    Harvard Particle Center

    Subprojects under this Center: (EPA does not fund or establish subprojects; EPA awards and manages the overall grant for this center).
    R827353C001 Assessing Human Exposures to Particulate and Gaseous Air Pollutants
    R827353C002 Quantifying Exposure Error and its Effect on Epidemiological Studies
    R827353C003 St. Louis Bus, Steubenville and Atlanta Studies
    R827353C004 Examining Conditions That Predispose Towards Acute Adverse Effects of Particulate Exposures
    R827353C005 Assessing Life-Shortening Associated with Exposure to Particulate Matter
    R827353C006 Investigating Chronic Effects of Exposure to Particulate Matter
    R827353C007 Determining the Effects of Particle Characteristics on Respiratory Health of Children
    R827353C008 Differentiating the Roles of Particle Size, Particle Composition, and Gaseous Co-Pollutants on Cardiac Ischemia
    R827353C009 Assessing Deposition of Ambient Particles in the Lung
    R827353C010 Relating Changes in Blood Viscosity, Other Clotting Parameters, Heart Rate, and Heart Rate Variability to Particulate and Criteria Gas Exposures
    R827353C011 Studies of Oxidant Mechanisms
    R827353C012 Modeling Relationships Between Mobile Source Particle Emissions and Population Exposures
    R827353C013 Toxicological Evaluation of Realistic Emissions of Source Aerosols (TERESA) Study
    R827353C014 Identifying the Physical and Chemical Properties of Particulate Matter Responsible for the Observed Adverse Health Effects
    R827353C015 Research Coordination Core
    R827353C016 Analytical and Facilities Core
    R827353C017 Technology Development and Transfer Core