2000 Progress Report: Assessing Deposition of Ambient Particles in the Lung

EPA Grant Number: R827353C009
Subproject: this is subproject number 009 , established and managed by the Center Director under grant R827353
(EPA does not fund or establish subprojects; EPA awards and manages the overall grant for this center).

Center: EPA Harvard Center for Ambient Particle Health Effects
Center Director: Koutrakis, Petros
Title: Assessing Deposition of Ambient Particles in the Lung
Investigators: Tsuda, Akira
Current Investigators: Godleski, John J. , Tsuda, Akira
Institution: Harvard University
EPA Project Officer: Chung, Serena
Project Period: June 1, 1999 through May 31, 2005 (Extended to May 31, 2006)
Project Period Covered by this Report: June 1, 2000 through May 31, 2001
Project Amount: Refer to main center abstract for funding details.
RFA: Airborne Particulate Matter (PM) Centers (1999) RFA Text |  Recipients Lists
Research Category: Air Quality and Air Toxics , Particulate Matter , Air

Objective:

This project is one of three under Theme III: Biological Mechanisms and Dosimetry of our proposal. The main objective of this project is to use in situ continuous respiratory and total deposition measurements to develop a new regional deposition.

Progress Summary:

To date, we have conducted a series of exposure experiments to test the hypothesis that the lung deposition of ambient particles (i.e., CAPs) can not be adequately described based on findings with conventionally used "test particles" such as iron oxide particles because of the complex physicochemical properties of CAPs. In the course of eight experiments performed so far, dogs were exposed to CAPs and control particles (Fe2O3; mean diameter of 0.7 m) and the total deposition of these particles was computed and compared over a wide range of particle size (40 nm-3 m). The initial results showed that: (1) changes in relative humidity along the airways influenced CAPs characteristics and consequently, their behavior in the respiratory tract; and (2) the total deposition of CAPs was substantially higher than that of control particles. These results suggest that the hygroscopic properties of CAPs may be important in determining deposition, and that the estimation based on nonhygroscopic control particles could be misleading by substantially underestimating the particle deposition for a given exposure.

Future Activities:

In the coming grant year, we plan to study dosimetry of ambient particles in human subjects.

Journal Articles:

No journal articles submitted with this report: View all 4 publications for this subproject

Supplemental Keywords:

particulate matter, PM2.5, PM10, air pollutants, particulates, health effects, exposure, ambient particles, susceptibility, metals, public policy, biology, engineering, epidemiology, toxicology, environmental chemistry, monitoring., RFA, Health, Scientific Discipline, Air, particulate matter, Toxicology, air toxics, Environmental Chemistry, Epidemiology, Risk Assessments, Susceptibility/Sensitive Population/Genetic Susceptibility, Environmental Microbiology, genetic susceptability, indoor air, Molecular Biology/Genetics, Biology, ambient air quality, health effects, monitoring, risk assessment, sensitive populations, particulates, chemical exposure, interindividual variability, molecular epidemiology, air pollutants, exposure and effects, stratospheric ozone, ambient air monitoring, health risks, cardiopulmonary responses, indoor exposure, human health effects, COPD, ambient air, developmental effects, epidemelogy, respiratory disease, exposure, pulmonary disease, ambient measurement methods, ambient monitoring, air pollution, particle exposure, biological mechanism , Human Health Risk Assessment, human exposure, heart rate, inhalation, pulmonary, ambient particle health effects, cardiopulmonary response, particulate exposure, inhaled, inhalation toxicology, human susceptibility, PM, cardiopulmonary, human health, indoor air quality, inhaled particles, toxics, metals, respiratory, genetic susceptibility, air quality, dosimetry, cardiovascular disease, human health risk

Relevant Websites:

http://www.hsph.harvard.edu/epacenter/homeframe.htm Exit

Progress and Final Reports:

Original Abstract
  • 1999 Progress Report
  • 2001 Progress Report
  • 2002 Progress Report
  • 2003
  • 2004
  • Final Report

  • Main Center Abstract and Reports:

    R827353    EPA Harvard Center for Ambient Particle Health Effects

    Subprojects under this Center: (EPA does not fund or establish subprojects; EPA awards and manages the overall grant for this center).
    R827353C001 Assessing Human Exposures to Particulate and Gaseous Air Pollutants
    R827353C002 Quantifying Exposure Error and its Effect on Epidemiological Studies
    R827353C003 St. Louis Bus, Steubenville and Atlanta Studies
    R827353C004 Examining Conditions That Predispose Towards Acute Adverse Effects of Particulate Exposures
    R827353C005 Assessing Life-Shortening Associated with Exposure to Particulate Matter
    R827353C006 Investigating Chronic Effects of Exposure to Particulate Matter
    R827353C007 Determining the Effects of Particle Characteristics on Respiratory Health of Children
    R827353C008 Differentiating the Roles of Particle Size, Particle Composition, and Gaseous Co-Pollutants on Cardiac Ischemia
    R827353C009 Assessing Deposition of Ambient Particles in the Lung
    R827353C010 Relating Changes in Blood Viscosity, Other Clotting Parameters, Heart Rate, and Heart Rate Variability to Particulate and Criteria Gas Exposures
    R827353C011 Studies of Oxidant Mechanisms
    R827353C012 Modeling Relationships Between Mobile Source Particle Emissions and Population Exposures
    R827353C013 Toxicological Evaluation of Realistic Emissions of Source Aerosols (TERESA) Study
    R827353C014 Identifying the Physical and Chemical Properties of Particulate Matter Responsible for the Observed Adverse Health Effects
    R827353C015 Research Coordination Core
    R827353C016 Analytical and Facilities Core
    R827353C017 Technology Development and Transfer Core