Center for Air, Climate, and Energy Solutions (CACES)

EPA Grant Number: R835873
Center: Center for Air, Climate, and Energy Solutions
Center Director: Robinson, Allen
Title: Center for Air, Climate, and Energy Solutions (CACES)
Investigators: Robinson, Allen , Adams, Peter , Apte, Joshua S. , Azevedo, Inês L , Boies, Adam M. , Brauer, Michael , Burnett, Richard T , Coggins, Jay S. , Donahue, Neil , Ezzati, Majid , Hankey, Steve , Hill, Jason , Jaramillo, Paulina , Marshall, Julian D. , Matthews, H. Scott , Michalek, Jeremy J. , Millet, Dylan B , Muller, Nicholas , Pandis, Spyros N. , Polasky, Stephen , Pope, Clive Arden , Presto, Albert
Institution: Carnegie Mellon University , Brigham Young University , Health Canada - Ottawa , Imperial College , Middlebury College , The University of Texas at Austin , University of British Columbia , University of Minnesota , University of Washington , Virginia Polytechnic Institute and State University
EPA Project Officer: Chung, Serena
Project Period: May 1, 2016 through April 30, 2021
Project Amount: $10,000,000
RFA: Air, Climate And Energy (ACE) Centers: Science Supporting Solutions (2014) RFA Text |  Recipients Lists
Research Category: Airborne Particulate Matter Health Effects , Air , Climate Change , Health Effects

Objective:

We propose a multidisciplinary, multi-institutional research center to address critical questions at the nexus of air, climate, and energy. The center design addresses overarching themes of regional differences, multiple pollutants, and development and dissemination of tools for air quality impact assessment. Novel measurement and modeling approaches will be applied to understand spatial and temporal differences in human exposures and health outcomes. We will investigate a range of technology and policy scenarios for addressing our nation’s air, climate, and energy challenges, and test their potential ability to meet policy goals such as improved health outcomes and cost-effectiveness.

Approach:

The center is comprised of five thematically and scientifically integrated research projects and one support center. Project 1 will extend existing chemical transport models to high spatial resolution (1 km) with tagged source apportionment and will develop a new class of reduced complexity models for air quality and exposure assessment. Project 2 will conduct comprehensive measurements in three cities (Austin, TX; Los Angeles, CA; Pittsburgh, PA) to quantify factors influencing gradients in pollutant concentrations and develop mechanistic understanding of how pollutant transformations affect population exposures. Project 3 will develop two sets of multi-pollutant land-use regression (LUR) models: (1) high spatial resolution (~0.1km) national-scale models to predict annual average concentrations over multiple decades (used for epidemiological analyses in Project 5); and (2) real-time high-resolution (hourly, ~0.1 km) LUR models for the case study cities in Project 2. Project 4 will use tools developed in other projects to investigate key air, climate, and energy challenges and their interactions. Using a common policy framework, we will focus on four main elements: electricity generation; transportation; land use; and climate-dependent emissions, transport and chemistry. Project 5 will analyze nationally representative population-based health data, combined with novel multi-pollutant exposure estimates and source contributions (Projects 1 and 3), to derive new knowledge on multi-pollutant mortality risk and its variability across the U.S. These new risk functions will be incorporated in our technology/policy analyses (Project 4).

Expected Results:

The proposed Center activities will build and demonstrate a new approach for integrated management of air quality, climate, and energy. This proposal addresses all four priority research areas in the RFA.


Journal Articles: 24 Displayed | Download in RIS Format

Other center views: All 36 publications 24 publications in selected types All 24 journal articles
Type Citation Sub Project Document Sources
Journal Article Clark LP, Millet DB, Marshall JD. Changes in transportation-related air pollution exposures by race-ethnicity and socioeconomic status: outdoor nitrogen dioxide in the United States in 2000 and 2010. Environmental Health Perspectives 2017;125(9):097012 (10 pp.). R835873 (2016)
R835873 (2017)
R835873C001 (2016)
R835873C003 (2016)
  • Full-text from PubMed
  • Abstract from PubMed
  • Associated PubMed link
  • Full-text: EHP-Full Text PDF
  • Abstract: EHP-Abstract and Full Text HTML
  • Journal Article Hankey S, Marshall JD. Urban form, air pollution, and health. Current Environmental Health Reports 2017;4(4):491-503. R835873 (2017)
  • Abstract from PubMed
  • Abstract: Springer-Abstract
    Exit
  • Other: ResearchGate-Abstract
    Exit
  • Journal Article Heo J, Adams PJ, Gao HO. Public health costs accounting of inorganic PM2.5 pollution in metropolitan areas of the United States using a risk-based source-receptor model. Environment International 2017;106:119-126. R835873 (2016)
    R835873 (2017)
    R835873C001 (2016)
  • Abstract from PubMed
  • Full-text: ScienceDirect-Full Text HTML
    Exit
  • Abstract: ScienceDirect-Abstract
    Exit
  • Other: ScienceDirect-Full Text PDF
    Exit
  • Journal Article Kaltsonoudis C, Kostenidou E, Louvaris E, Psichoudaki M, Tsiligiannis E, Florou K, Liangou A, Pandis SN. Characterization of fresh and aged organic aerosol emissions from meat charbroiling. Atmospheric Chemistry and Physics 2017;17(11):7143-7155. R835873 (2017)
  • Full-text: ACP-Full Text PDF
    Exit
  • Abstract: ACP-Abstract
    Exit
  • Other: Harvard University-Abstract
    Exit
  • Journal Article Li HZ, Dallmann TR, Li X, Gu P, Presto AA. Urban organic aerosol exposure: spatial variations in composition and source impacts. Environmental Science & Technology 2018;52(2):415-426. R835873 (2017)
  • Abstract from PubMed
  • Full-text: ResearchGate-Abstract and Full Text PDF
    Exit
  • Abstract: ACS-Abstract
    Exit
  • Other: ACS-Full Text PDF
    Exit
  • Journal Article Muller NZ, Jha A. Does environmental policy affect scaling laws between population and pollution? Evidence from American metropolitan areas. PLoS One 2017;12(8):e0181407 (15 pp.). R835873 (2017)
    R835873C004 (2016)
  • Full-text from PubMed
  • Abstract from PubMed
  • Associated PubMed link
  • Full-text: PLOS ONE-Full Text HTML
    Exit
  • Abstract: PLOS ONE-Abstract
    Exit
  • Other: PLOS ONE-Full Text PDF
    Exit
  • Journal Article Muller NZ, Matthews PH, Wiltshire-Gordon V. The distribution of income is worse than you think: including pollution impacts into measures of income inequality. PLoS ONE 2018;13(3),e0192461 (15 pp.). R835873 (2017)
  • Full-text from PubMed
  • Abstract from PubMed
  • Associated PubMed link
  • Full-text: PLOS One-Full Text HTML
    Exit
  • Abstract: PLOS One-Abstract
    Exit
  • Other: PLOS One-Full Text PDF
    Exit
  • Journal Article Muller NZ. Environmental benefit-cost analysis and the national accounts. Journal of Benefit-Cost Analysis 2018;9(1):27-66. R835873 (2017)
    R835873C004 (2016)
  • Abstract: Cambridge University Press-Abstract
    Exit
  • Other: EconPapers-Citation
    Exit
  • Journal Article Nguyen NP, Marshall JD. Impact, efficiency, inequality, and injustice of urban air pollution: variability by emission location. Environmental Research Letters 2018;13(2):024002 (9 pp.). R835873 (2017)
  • Full-text: IOP-Full Text HTML
    Exit
  • Abstract: IOP-Abstract
    Exit
  • Other: IOP-Full Text PDF
    Exit
  • Journal Article Paolella DA, Tessum CW, Adams PJ, Apte JS, Chambliss S, Hill J, Muller NZ, Marshall JD. Effect of model spatial resolution on estimates of fine particulate matter exposure and exposure disparities in the United States. Environmental Science & Technology Letters 2018;5(7):436-441. R835873 (2017)
  • Full-text: ACS-Full Text HTML
    Exit
  • Abstract: ACS-Abstract
    Exit
  • Other: ACS-Full Text PDF
    Exit
  • Journal Article Pope III CA, Ezzati M, Cannon JB, Allen RT, Jerrett M, Burnett RT. Mortality risk and PM2.5 air pollution in the USA: an analysis of a national prospective cohort. Air Quality, Atmosphere & Health 2018;11(3):245-252. R835873 (2017)
  • Abstract: Springer-Abstract
    Exit
  • Other: ResearchGate-Abstract
    Exit
  • Journal Article Saha PK, Robinson ES, Shah RU, Zimmerman N, Apte JS, Robinson AL, Presto AA. Reduced ultrafine particle concentration in urban air: changes in nucleation and anthropogenic emissions. Environmental Science & Technology 2018;52(12):6798-6806. R835873 (2017)
  • Abstract from PubMed
  • Full-text: ResearchGate-Abstract and Full Text PDF
    Exit
  • Abstract: ACS-Abstract
    Exit
  • Other: ACS-Full Text PDF
    Exit
  • Journal Article Sergi B, Davis A, Azevedo I. The effect of providing climate and health information on support for alternative electricity portfolios. Environmental Research Letters 2018;13(2):024026 (10 pp.). R835873 (2017)
  • Full-text: IOP-Full Text HTML
    Exit
  • Abstract: IOP-Abstract
    Exit
  • Other: IOP-Full Text PDF
    Exit
  • Journal Article Tessum CW, Hill JD, Marshall JD. InMAP: a model for air pollution interventions. PLoS ONE 2017;12(4):e0176131 (26 pp.). R835873 (2016)
    R835873 (2017)
    R835873C001 (2016)
  • Full-text from PubMed
  • Abstract from PubMed
  • Associated PubMed link
  • Full-text: PLoS ONE-Full Text HTML
    Exit
  • Abstract: PLoS ONE-Abstract
    Exit
  • Other: PLoS ONE-Full Text PDF
    Exit
  • Journal Article Tessum CW, Hil JD, Marshall JD. InMAP:A model for air pollution interventions. PLoS ONE 12, e0176131, 0.1371/journal.pone.0176131, 2017. R835873C001 (2016)
    not available
    Journal Article Thakrar SK, Goodkind AL, Tessum CW, Marshall JD, Hill JD. Life cycle air quality impacts on human health from potential switchgrass production in the United States. Biomass and Bioenergy 2018;114:73-82. R835873 (2017)
  • Full-text: ScienceDirect-Full Text HTML
    Exit
  • Abstract: ScienceDirect-Abstract
    Exit
  • Other: ScienceDirect-Full Text PDF
    Exit
  • Journal Article Thind MPS, Wilson EJ, Azevedo IL, Marshall JD. Marginal emissions factors for electricity generation in the Midcontinent ISO. Environmental Science & Technology 2017;51(24):14445–14452. R835873 (2017)
  • Abstract from PubMed
  • Full-text: Wind Watch-Full Text PDF
    Exit
  • Abstract: ACS-Abstract
    Exit
  • Other: ACS-Full Text PDF
    Exit
  • Journal Article Vaishnav P, Horner N, Azevedo IL. Was it worthwhile? Where have the benefits of rooftop solar photovoltaic generation exceeded the cost? Environmental Research Letters 2017;12(9):094015 (14 pp.). R835873 (2017)
  • Full-text: IOP-Full Text HTML
    Exit
  • Abstract: IOP-Abstract
    Exit
  • Other: IOP-Full Text PDF
    Exit
  • Journal Article Weis A, Jaramillo P, Michalek J. Consequential life cycle air emissions externalities for plug-in electric vehicles in the PJM interconnection. Environmental Research Letters 2016;11(2):024009 (12 pp.). R835873 (2016)
    R835873 (2017)
    R835873C001 (2016)
    R835873C004 (2016)
  • Full-text: IOP Science-Full Text PDF
    Exit
  • Abstract: IOP Science-Abstract & Full Text HTML
    Exit
  • Other: Research Gate-Abstract & Full Text PDF
    Exit
  • Journal Article Ye Q, Gu P, Li HZ, Robinson ES, Lipsky E, Kaltsonoudis C, Lee AKY, Apte JS, Robinson AL, Sullivan RC, Presto AA, Donahue NM. Spatial variability of sources and mixing state of atmospheric particles in a metropolitan area. Environmental Science & Technology 2018;52(12):6807-6815. R835873 (2017)
  • Abstract from PubMed
  • Full-text: ResearchGate-Abstract and Full Text PDF
    Exit
  • Abstract: ACS-Abstract
    Exit
  • Other: ACS-Full Text PDF
    Exit
  • Journal Article Zakoura M, Pandis SN. Overprediction of aerosol nitrate by chemical transport models: the role of grid resolution. Atmospheric Environment 2018;187:390-400. R835873 (2017)
  • Full-text: ScienceDirect-Full Text HTML
    Exit
  • Abstract: ScienceDirect-Abstract
    Exit
  • Other: ScienceDirect-Full Text PDF
    Exit
  • Journal Article Zhao Y, Saleh R, Saliba G, Presto AA, Gordon TD, Drozd GT, Goldstein AH, Donahue NM, Robinson AL. Reducing secondary organic aerosol formation from gasoline vehicle exhaust. Proceedings of the National Academy of Sciences of the United States of America 2017;114(27):6984-6989. R835873 (2016)
    R835873 (2017)
    R835873C001 (2016)
    R835873C004 (2016)
  • Full-text from PubMed
  • Abstract from PubMed
  • Associated PubMed link
  • Full-text: PNAS-Full Text HTML
    Exit
  • Abstract: PNAS-Abstract
    Exit
  • Other: PNAS-Full Text PDF
    Exit
  • Journal Article Zimmerman N, Presto AA, Kumar SPN, Gu J, Hauryliuk A, Robinson ES, Robinson AL, Subramanian R. A machine learning calibration model using random forests to improve sensor performance for lower-cost air quality monitoring. Atmospheric Measurement Techniques 2018;11(1):291-313. R835873 (2017)
  • Full-text: EGU-Full Text PDF
    Exit
  • Abstract: EGU-Abstract
    Exit
  • Other: Harvard University-Abstract
    Exit
  • Journal Article Zimmerman N, Presto AA, Kumar SPN, Gu J, Hauryliuk A, Robinson ES, Robinson AL, Subramanian R. Closing the gap on lower cost air quality monitoring:machine learning calibration models to improve low-cost sensor performance. Atmospheric Measurement Techniques Discussions August 2017 [In review]. R835873 (2016)
    R836286 (2016)
  • Full-text: AMT-Prepublication PDF
    Exit
  • Abstract: AMT-Abstract
    Exit
  • Supplemental Keywords:

    air pollution, climate, energy, health effects, social cost, impact assessment;

    Progress and Final Reports:

  • 2016 Progress Report
  • 2017 Progress Report
  • Subprojects under this Center: (EPA does not fund or establish subprojects; EPA awards and manages the overall grant for this center).
    R835873C001 Mechanistic Air Quality Impact Models for Assessment of Multiple Pollutants at High Spatial Resolution
    R835873C002 Air Quality Observatory
    R835873C003 Next Generation LUR Models: Development of Nationwide Modeling Tools for Exposure Assessment and Epidemiology
    R835873C004 Air Pollutant Control Strategies in a Changing World
    R835873C005 Health Effects of Air Pollution and Mitigation Scenarios