Potential Air Toxics Hot Spots in Truck Terminals and Cabs

EPA Grant Number: R834677C172
Subproject: this is subproject number 172 , established and managed by the Center Director under grant R834677
(EPA does not fund or establish subprojects; EPA awards and manages the overall grant for this center).

Center: Health Effects Institute (2010 — 2015)
Center Director: Greenbaum, Daniel S.
Title: Potential Air Toxics Hot Spots in Truck Terminals and Cabs
Investigators: Smith, Thomas
Institution: Environmental and Occupational Health Sciences Institute , Health Effects Institute (HEI)
EPA Project Officer: Hunt, Sherri
Project Period: April 1, 2010 through March 31, 2015
RFA: Health Effects Institute (2010) RFA Text |  Recipients Lists
Research Category: Health Effects , Air Quality and Air Toxics , Air

Objective:

Hot spots are areas where concentrations of one or more air toxics — organic vapors or particulate matter (PM) —are expected to be elevated. The U.S. Environmental Protection Agency’s (EPA*) screening values for air toxics were used in our definition of hot spots. According to the EPA, a screening value “is used to indicate a concentration of a chemical in the air to which a person could be continually exposed for a lifetime ... and which would be unlikely to result in a deleterious effect (either cancer or noncancer health effects)” (U.S. EPA 2006). Our characterization of volatile organic compounds (VOCs; namely 18 hydrocarbons, methyl tert-butyl ether [MTBE], acetone, and aldehydes) was added onto our ongoing National Cancer Institute–funded study of lung cancer and particulate pollutant concentrations (PM with an aerodynamic diameter ≤ 2.5 μm [PM2.5], elemental carbon [EC], and organic carbon [OC]) and source apportionment of the U.S. trucking industry. We focused on three possible hot spots within the trucking terminals: upwind background areas affected by nearby industrial parks; downwind areas affected by upwind and terminal sources; and the loading docks and mechanic shops within terminal as well as the interior of cabs of trucks being driven on city, suburban, and rural streets and on highways.

Approach:

In Phase 1 of the investigators study, 15 truck terminals across the United States were each visited for five consecutive days. During these site visits, sorbent tubes were used to collect 12-hour integrated samples of hydrocarbons and aldehydes from upwind and downwind fence-line locations as well as inside truck cabs. Meteorologic data and extensive site information were collected with each sample. In Phase 2, repeat visits to six terminals were conducted to test the stability of concentrations across time and judge the representativeness of our previous measurements. During the repeat site visits, the sampling procedure was expanded to include real-time sampling for total hydrocarbon (HC) and PM2.5 at the terminal upwind and downwind sites and inside the truck cabs, two additional monitors in the yard for four-quadrant sampling to better characterize the influence of wind, and indoor sampling in the loading dock and mechanic shop work areas.

 

Expected Results:

All three types of testing sites — upwind and downwind traffic — met the established definition for a hot spot by having periods with concentrations of pollutants that exceeded the EPA’s screening values. Most frequently, the pollutants with concentrations exceeding the screening values were formaldehyde, acetaldehyde, and EC (which serves as a marker for diesel particulate); less frequently they were 1,3-butadiene and benzene. In the case of the downwind location of a single truck terminal without an aggregation of other sources, high concentrations of VOCs and PM were infrequent. Using structural equation modeling, a model was developed that could identify combinations of conditions and factors likely to produce hot spots. Source apportionment analyses showed that EC came predominantly from diesel emissions. As expected from the sites studied, organic vapors associated with vehicle emissions (C6–C8 alkanes and aromatics) were the predominant components of VOCs, followed by formaldehyde and acetaldehyde. For driver exposures, high VOC values were associated with stopped vehicles, and high PM2.5 values were associated with conditions during driving.

Supplemental Keywords:

Health Effects, Air Toxics, 1,3-butadiene, benzene, VOCs, particulate matter, MTBE, air toxic hot spots

Relevant Websites:

http://pubs.healtheffects.org/getfile.php?u=886 Exit


Main Center Abstract and Reports:

R834677    Health Effects Institute (2010 — 2015)

Subprojects under this Center: (EPA does not fund or establish subprojects; EPA awards and manages the overall grant for this center).
R834677C149 Development and Application of a Sensitive Method to Determine Concentrations of Acrolein and Other Carbonyls in Ambient Air
R834677C150 Mutagenicity of Stereochemical Configurations of 1,3-Butadiene Epoxy Metabolites in Human Cells
R834677C151 Biologic Effects of Inhaled Diesel Exhaust in Young and Old Mice: A Pilot Project
R834677C152 Evaluating Heterogeneity in Indoor and Outdoor Air Pollution Using Land-Use Regression and Constrained Factor Analysis
R834677C153 Improved Source Apportionment and Speciation of Low-Volume Particulate Matter Samples
R834677C155 The Impact of the Congestion Charging Scheme on Air Quality in London
R834677C156 Concentrations of Air Toxics in Motor Vehicle-Dominated Environments
R834677C158 Air Toxics Exposure from Vehicle Emissions at a U.S. Border Crossing: Buffalo Peace Bridge Study
R834677C159 Role of Neprilysin in Airway Inflammation Induced by Diesel Exhaust Emissions
R834677C160 Personal and Ambient Exposures to Air Toxics in Camden, New Jersey
R834677C162 Assessing the Impact of a Wood Stove Replacement Program on Air Quality and Children’s Health
R834677C163 The London Low Emission Zone Baseline Study
R834677C165 Effects of Controlled Exposure to Diesel Exhaust in Allergic Asthmatic Individuals
R834677C168 Evaluating the Effects of Title IV of the 1990 Clean Air Act Amendments on Air Quality
R834677C172 Potential Air Toxics Hot Spots in Truck Terminals and Cabs
R834677C173 Detection and Characterization of Nanoparticles from Motor Vehicles
R834677C174 Cardiorespiratory Biomarker Responses in Healthy Young Adults to Drastic Air Quality Changes Surrounding the 2008 Beijing Olympics