Phytoplankton community indicators of short- and long-term ecological change in the anthropogenically and climatically impacted Neuse River Estuary, North Carolina, USA.



Citation:

Paerl HW, Rossignol KL, Hall SN, Peierls BL, Wetz MS. Phytoplankton community indicators of short-and long-term ecological change in the anthropogenically and climatically impacted Neuse River Estuary, North Carolina, USA. Estuaries and Coasts 2010;33(2):485-497.

Abstract:

Estuarine and coastal systems represent a challenge when it comes to determining the causes of ecological change because human and natural perturbations often interact. Phytoplankton biomass (chlorophyll a) and group-specific photopigment indicators were examined from 1994 to 2007 to assess community responses to nutrient and climatic perturbations in the Neuse River Estuary, NC. This system experienced nutrient enrichment and hydrologic variability, including droughts, and an increase in hurricanes. Freshwater input strongly interacted with supplies of the limiting nutrient nitrogen (N) and temperature to determine the location, magnitude, and composition of phytoplankton biomass. Multi-annual, seasonal, and episodic hydrologic perturbations, including changes in the frequency and intensity of tropical storms, hurricanes and droughts, caused significant shifts in phytoplankton community structure. Climatic oscillations can at times overwhelm anthropogenic nutrient inputs in terms of controlling algal bloom thresholds, duration, and spatial extent. Eutrophication models should incorporate climatically driven changes to better predict phytoplankton community responses to nutrient inputs and other anthropogenic perturbations.