Characterization of airborne carbonate over a site near Asian dust source regions during spring 2002 and its climatic and environmental significance

Received 16 July 2004; revised 20 October 2004; accepted 26 November 2004; published 8 February 2005.

During spring 2002, three dust storm events were monitored by filter sampling in Xi’an near an Asian dust source region of northwest China. The carbonate (CO$_3$2-) fraction was determined by sample acidification and thermal evolution. The CO$_3$2- accounted for 8.0 ± 0.8% of particles with aerodynamic diameter ≤2.5 μm (PM$_{2.5}$) during dust storms and 4.7 ± 3.0% of PM$_{2.5}$ between storms. The ratios of calcium to carbonate carbon were consistent with those of calcite (CaCO$_3$). The δ13C and δ18O abundances in dust storm samples were −2.7 ± 0.7‰ and −5.8 ± 1.5‰, which differed from −8.3 ± 1.9‰ for δ13C and −10.8 ± 2.0‰ for δ18O during normal conditions. The δ13C is positively correlated with δ18O values ($r = 0.78$). This first measurement of isotopic abundance in Asian dust indicates the potential to quantify its contribution at distant locations using receptor models. By increasing the alkalinity of ocean water in the Pacific Ocean and buffering the atmospheric acidity of east Asia, the large amounts of airborne CO$_3$2- (as high as 44.8 Tg yr$^{-1}$) entrained by Asian dust may provide an important atmospheric alkaline carbon reservoir for large-scale climatic and environmental changes.

1. Introduction

Mineral dust plays important global roles in the land, atmosphere, and ocean [Arimoto, 2001; Ridgwell, 2002]. Within the past decade, there has been increasing interest in airborne carbonate (CO$_3$2-) in suspended dust because of its important roles in atmospheric chemistry, global climate, and radiative forcing [Sequeira, 1993; Buseck and Posfai, 1999; Oba and Pedersen, 1999; Li et al., 2000], presenting “carbonate mysteries” in the global climatic system [Elderfield, 2002]. CO$_3$2- can affect atmospheric chemistry and aerosol characteristics because its alkalinity favors the uptake of SO$_2$ and NO$_x$ and their conversion to SO$_4$ and NO$_3$ on the surface, as well as removal of HNO$_3$ and H$_2$SO$_4$ from the gas phase [Dentener et al., 1996]. The buffering capacity of CO$_3$2- has been demonstrated for precipitation in China [Zhao et al., 1988] and the Northern Hemisphere [Sequeira, 1993]. Increased airborne CO$_3$2- concentrations during glacial periods could have played an intermediary role between the biological and alkalinity pumps in the ocean, enhancing CO$_2$ absorption by the ocean and by rain [Oba and Pedersen, 1999]. Different mineral particles, including calcite (CaCO$_3$), have different effects on Earth’s radiative forcing [Li et al., 2000].

CaCO$_3$ is a prominent alkaline component of source materials in Asian dust source regions [Liu et al., 1985; Andronova et al., 1993; Gomes and Gillette, 1993]. Previous studies about CO$_3$2- focused on Ca as an indicator [Gomes and Gillette, 1993; Sequeira, 1993], but this is not specific to CO$_3$2- because CaO, and Ca(OH)$_2$ also contribute to ambient Ca levels [Zhang and Iwasaka, 1999].

Large amounts of dust from Central Asia are carried by midlatitude prevailing winds and deposited in east Asia and beyond. Portions of this Asian dust are found in the near-surface atmosphere, in deep-sea sediments of the remote Pacific [Duce et al., 1980; Hovan et al., 1989], and in Greenland ice cores [Biscaye et al., 1997]. Asian dust has been found also in the atmosphere of Korea and Japan [Okada et al., 1990; Ro et al., 2001; Kawamura et al., 2004] and in the northern United States [Watson, 2002; VanCuren and Cahill, 2002; VanCuren, 2003]. In spite of many Asian dust studies, information about CO$_3$2- in the atmosphere near Asian dust source regions is scarce. Soil-derived CO$_3$2- from Asia is of interest for a better understanding of alkaline matter contribution to climatic and environmental effects at local, regional, and global scales [Dentener et al., 1996]. This paper reports the first measurements and comparisons of CO$_3$2- in Asian dust storm (DS)
and non-dust-storm (NDS) periods at a continental site in Asian dust source regions.

2. Sampling and Analyses

2.1. Sampling

[Xi’an (33°29’–34°44’N, 107°40’–109°49’E, population 5 million), the largest city in northwestern China, lies in the south margin of the Loess Plateau, China. During the spring, desert dust entrained by winter monsoonal winds from western and northwestern Chinese deserts such as the Taklimakan and Badain Juran reaches Xi’an, with high ambient particulate matter (PM) concentrations. PM collected in Xi’an during dust storms has a composition similar to that of source regions [Zhuang et al., 1992; Zhang et al., 1993; Gao et al., 1997]. The Xi’an monitoring site (400 m above the sea level) is situated 15 km south of downtown Xi’an. The site has an urban-scale zone of representation [Chow et al., 2002] with no major industrial activities or local fugitive dust sources in the surrounding area, which is mostly residential. Aerosol samples were obtained from the rooftop of the Institute of Earth Environment, Chinese Academy of Sciences, at 10 m above ground level.

[Particulate matter (PM) samples were collected from 20 March to 17 April 2002 with a minivolume [Baldauf et al., 2001] sampler (AirMetrics, Springfield, Oregon, USA) operating at flow rates of 5 L min⁻¹ [Cao et al., 2003] on 47 mm Whatman quartz fiber filters (QM-A). Filters were preheated at 800°C for 3 hours to remove any residual carbon content. Twenty-four-hour sampling was conducted each day. Additional and shorter-duration samples were collected during the 20 March and 14 April dust storms to obtain a characterization of pure Asian dust particles. Thus 31 aerosol samples were collected in 29 days.

[Three dust storms occurred in spring 2002 in Xi’an: on 20 March (DS I), 29 March (DS II), and 14 April (DS III). On the basis of 5-day three-dimensional back trajectories (NOAA HYSPLIT model), all of the dust storms originated from the northwest deserts and Gobi regions (Figure 1). DS I was the most intense in recent years [Zhang et al., 2005]. Figure 1 shows strong winds over the northwest dust source regions and transport through 18 provinces in northern China. DS I lasted more than 50 hours (from ~6:00 a.m., 20 March to ~9:00 a.m., 22 March). The impact of this dust storm was detected in Beijing [Sugimoto et al., 2003], and Chongwon-Chongju in Korea [Chung et al., 2003]. The effects of DS III also were observed at the Zhenbeitai supersite of ACE-Asia [Alfarro et al., 2003], which is located ~600 km north of Xi’an.

2.2. Mass and Elemental Analyses

[X-ray and energy dispersive X-ray spectrometry (EDX) analyses were performed to identify the elemental composition of the aerosol samples. The samples were analyzed for Ca concentrations by proton-induced X-ray emission spectroscopy (PIXE) using
2.5 MeV protons with a 10 nA beam current from a 1.7 × 2 MV accelerator at Beijing Normal University. The PIXE system was calibrated using standards produced by Micro-Matter Co. [Zhang et al., 1997]. Blank filter background spectra were subtracted prior to peak integration. Analysis of eight samples of standard reference material from the National Bureau of Chemical Exploration Analysis [1984], China, showed that satisfactory precision (<10%) and accuracy (<15%) were achieved.

2.3. Carbonate Carbon Analysis

[10] Samples were analyzed for carbonate carbon (CC) using a DRI Model 2001 Thermal/Optical Carbon Analyzer [Chow et al., 2001, 2004]. To release and quantify CC, the 0.526 cm² punch was first bathed in pure helium (He) at 40 cm³ min⁻¹ for 90 s to attain equilibrium with the environment. Twenty microliters of 25% v/v Ortho phosphoric acid (H₃PO₄) was then deposited onto the punch with a microliter syringe. The amount of H₃PO₄ is sufficient to entrain the CO₂ in the He carrier gas, passes through oxidizing and reducing ovens, and is measured as CH₄ by a flame ionization detector (FID). The detection limits for CC were below 1.0 μg m⁻³. The analyzer was calibrated with known quantities of CH₄ every day. Replicate analyses were performed on one out of 10 samples and differences were smaller than 5% for CC.

[11] CC (12 amu) can be converted to the equivalent CO₃²⁻ (60 amu) concentration by a factor of 5 (60/12) multiplier.

2.4. Stable Carbon and Oxygen Isotope Analysis

[12] The δ⁰¹³C and δ¹⁸O isotopic abundances were measured on a Finnigan MAT 252 mass spectrometer fitted with an online Finnigan automatic CO₃²⁻ reaction system (“Kiel device”). The filters were cut into small pieces and put into the glass test tube, and then baked about 1 hour at 70°C. The evolved CO₂ was transferred to a liquid nitrogen dewar controlled at a constant temperature (70°C) for 600 s; impurity gases were eliminated in another 90 s. The evolved CO₂ was transferred to a liquid nitrogen dewar controlled at −170°C liquid nitrogen. Impurity gases were removed at their gas condensation temperature to purify the CO₂. The dewar was heated to release the CO₂ to another dewar, and their CO₂ was transferred to the ion source of MAT 252 mass spectrometer for δ¹³C and δ¹⁸O analysis. Isotopic results are presented in the usual δ notations as the permil (%) deviation of the sample CO₂ from the Pee Dee Belemnitic (PDB) standard.

\[\delta_{\text{sample}} = R_{\text{sample}} / R_{\text{standard}} - 1 \times 1000^\circ \text{oo} \tag{1} \]

where \(R = ^{13}\text{C}/^{12}\text{C} \) or \(^{18}\text{O}/^{16}\text{O}\). The reproducibility of the system is ±0.1% for δ¹³C and ±0.2‰ for δ¹⁸O on the basis of replicate measurements of an internal CO₃²⁻ standard. Eighteen samples with high CO₃²⁻ contents were measured for the stable C-O isotopes. Replicate analyses of three samples with high CO₃²⁻ content showed that analytical errors in the carbon and oxygen isotope ratios were within 1% and 5%, respectively.

3. Results

3.1. Temporal Variations of PM₂.₅ Mass and Carbonate Carbon Concentrations

[11] Daily PM₂.₅ and CC concentrations from 20 March to 17 April in Xi’an are shown in Figure 2. PM₂.₅ mass and CC concentrations in the DS samples increased because of the large contribution of crustal matter. The highest PM₂.₅ concentrations was 740 μg m⁻³ on 14 April, which was more than 3 times the daily average concentration of 200 μg m⁻³ during NDS period. The peak concentrations of daily average CC reached 13 μg m⁻³ on the same day, seven times the average CC concentration of 1.9 μg m⁻³ during the NDS period. Compared with the PM₂.₅ concentration of 350 μg m⁻³ at the 20 March episode in Xi’an, the TSP (total suspended particles) at Beijing was as high as 11,000 μg m⁻³ on 20 March [Sugimoto et al., 2003], and the PM₂.₅ at Chongwon-Chongju Korea was 331 μg m⁻³ on 23 March [Chung et al., 2003]. The peak hourly concentration of PM₂.₅ during DS III achieved 848 μg m⁻³ (Figure 2). In contrast, PM₉ₐ hourly mass concentrations at Zhenbeitai reached 4650 μg m⁻³ [Affaro et al., 2003]. Between 20 March and 17 April, two precipitation events (25 March and 4 April) occurred and PM₂.₅ and CC levels decreased. Because few measurements are available elsewhere for CC, it is difficult to compare concentrations at different locations for the same dust storm events. Kawamura et al. [2004] reported a TSP CC of 6.3 μg m⁻³ at the Kosan (126°10’E, 33°17’N) supersite of ACE-Asia during DS I, compared with the PM₂.₅ CC at Xi’an of 4.3 μg m⁻³.

[14] PM CO₃²⁻ has not been measured very often, as shown in Table 1. CO₃²⁻ is measured by the acidification method [Chow and Watson, 2002] (i.e., acid releases the CO₃²⁻ in the filters), or by X-ray diffraction [Sturges et al., 1989; Esteve et al., 1997]. Compared with other measurements, the average airborne CO₃²⁻ in Xi’an during NDS periods was higher than those reported in Table 1. CO₃²⁻ levels during Asian dust storms (36 μg m⁻³, average value of five dust storm samples) are the highest reported anywhere.

[15] The fractions of PM₂.₅ composed of CO₃²⁻ are also given in Figure 2. CO₃²⁻ on average accounted for 8.0% of PM₂.₅ during DS and 4.7% of PM₂.₅ under NDS conditions. The average fraction of CO₃²⁻ in DS samples is similar to that in deep China loess (6.7% [Wen, 1989]) deposit. It is also similar to the CO₃²⁻ mass fraction of 7.1% from surface samples taken from the Taklimakan desert [Wang et al., 2004], which is the most important source of Asian dust.

3.2. Elemental Composition

[16] The maximum possible CC was estimated as 0.3 times the calcium (Ca) concentration, which is the ratio of the atomic weights of carbon (12 amu) and Ca (40 amu) in calcium carbonate (the most common geological form). This is an upper limit for actual CO₃²⁻ levels, since Ca in surface soils is often present in oxide forms such as CaO. Generally, calcium carbonate in the forms of calcite (CaCO₃), orthorhombic aragonite (CaCO₃), and hexagonal...
dolomite (CaMg(CO$_3$)$_2$) constitute ~4% of the Earth’s crust, but this abundance is higher in Asian dust source regions [Liu et al., 1985; Gomes and Gillette, 1993]. China loess samples are characteristically CO$_3^2$- rich in calcite (~100%) rather than dolomite [Wen, 1989]. The results of PIXE analysis for Ca are presented in Table 2, which shows that elevated Ca concentrations are associated with elevated CC concentrations, and vice versa. For 11 of the 12 PM$_{2.5}$ samples, measured CC is more than half of the Ca-estimated CC, consistent with Ca being present mostly in CO$_3^2$- minerals, such as calcite. Only the sample collected on 30 March measured CC less than 25% of the Ca-estimated CC, implying that most of the Ca in this sample was in a noncarbonate form.

3.3. Stable Carbon and Oxygen Isotopic Characteristics

[17] Samples from Asia, Africa, America, and Europe demonstrated that carbon and oxygen isotopic abundance in pedogenic CO$_3^2$- varies with local ecosystem and climatic conditions [Cerling, 1984]. Stable carbon and oxygen isotopic compositions of CO$_3^2$- are useful indicators of paleoecologic and paleoclimatic variations [Wen, 1989; Li et al., 1995]. Carbonates from different areas of North China have distinct 13C and 18O isotopic compositions [Wen, 1989; Li et al., 1995]. These isotopic abundances might be useful for identifying a quantitative Asian dust contribution to ambient PM$_{2.5}$.

[18] Figure 3 shows that the δ^{13}C and δ^{18}O abundance in PM$_{2.5}$ CO$_3^2$- fall within the range of fresh water CO$_3^2$- and resemble the isotopic characteristics of eolian sand and loess. These samples separate into two distinct groups (Figure 3) from which information can be gained about different source contributions. For δ^{13}C, the maximum value (~1.4%) occurred in the 20 March dust storm sample, while the minimum value (~9.3%) occurred in the non-dust-storm samples of 12 and 13 April. The average δ^{13}C for dust storm samples (five samples in total, two from DSI, one from DSII, and two from DSIII (Figure 3)) was ~2.7%, which is close to the δ^{13}C value of ~3.5% in

Table 1. Examples of Carbonate (CO$_3^2$-) Concentrations in Suspended Particles

<table>
<thead>
<tr>
<th>Reference</th>
<th>Study Location</th>
<th>Study Period</th>
<th>Carbonate Concentration (Size Fraction), ng m$^{-3}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mueller et al. [1971]</td>
<td>Pasadena, California, USA</td>
<td>summer 1969</td>
<td><20–880 (PM of 0.1–17 μm) (calcite)</td>
</tr>
<tr>
<td>Sturges et al. [1989]</td>
<td>Toronto, Canada</td>
<td>January and July 1986</td>
<td>920–1470 (PM$_{2.5}$) (calcite)</td>
</tr>
<tr>
<td>Esteve et al. [1997]</td>
<td>Castellon, Spain</td>
<td>July 1993</td>
<td>550 (quartz, calcite, gypsum)</td>
</tr>
<tr>
<td>Zappoli et al. [1999]</td>
<td>Great Hungarian Plain and central Sweden</td>
<td>summer 1996</td>
<td><100–200 (PM $<$ 1.5 μm) (CC)</td>
</tr>
<tr>
<td>Zappoli et al. [1999]</td>
<td>Pe Valley, Italy</td>
<td>fall 1996</td>
<td>400–3000 (PM$_{2.5}$) (CC)</td>
</tr>
<tr>
<td>Chow et al. [2002]</td>
<td>58 sites of IMPROVE network, USA</td>
<td>1996–1999</td>
<td>from <100 to 420 (PM$_{2.5}$) (CC)</td>
</tr>
<tr>
<td>Venkataraman et al. [2001]</td>
<td>Mumbai, India</td>
<td>1999</td>
<td>1300–2500 (PM$_{2.5}$) (CC)</td>
</tr>
<tr>
<td>This study</td>
<td>DS, Xi’an, China</td>
<td>spring 2002</td>
<td>36,000 (PM$_{2.5}$)</td>
</tr>
<tr>
<td>This study</td>
<td>NDS, Xi’an, China</td>
<td>spring 2002</td>
<td>9700 (PM$_{2.5}$)</td>
</tr>
</tbody>
</table>
modern eolian sand from the northwest deserts [Li et al., 1995] and to the δ13C value of 0.7‰ in surface samples from the Taklimakan desert [Wang et al., 2004]. Asian dust in PM2.5 can remain suspended for more than one week or can be resuspended after deposition. The local Xi'an atmosphere showed Asian dust contributions during several NDS periods. The average δ13C for NDS periods is −8.3‰, close to δ13C value of −7.5‰ for surface soil in Xi'an [Wen, 1989]. The variations of δ18O show a similar relationship with the δ13C from DS and NDS samples. As shown in Figure 3, δ13C values were strongly correlated with δ18O values (r = 0.78, p < 0.001), but the relationship appears stronger for DS than for NDS samples.

[19] The isotopic composition of CO3²⁻ during NDS periods (Figure 3) reflects the mixed contributions from Asian and local dust sources. The relative contributions from Asian dust and local sources can be apportioned as follows [Langmuir et al., 1978; Watson et al., 2002]:

$$8M = X_A \delta_A + X_B \delta_B$$

(2)

where 8M denotes δ13C of ambient samples with Asian and local dust mixture (middle group of points in Figure 3), δA denotes the δ13C of CO3²⁻ in DS samples (−2.7‰, upper group in Figure 3) and δB denotes the δ13C of CO3²⁻ in NDS local samples (−9.5‰) (the lower left group in Figure 3). The relative contributions from dust storm source accounted for 32–89% of ambient samples during different NDS periods with carryover from the DS periods. The highest Asian dust contributions occurred on 22 March, two days of DS I (Figure 2). PM2.5 entrained by this intense dust storm remained in the air for several days because there was no precipitation and limited deposition. The lowest Asian dust contribution (32%) to mixed samples occurred on 28 March.

4. Discussion

4.1. Climatic Effects

[20] Dust inputs cause biological and geochemical response in oceans [Ridgwell, 2002]. The capacity of the oceanic “biological pump” is large enough to have contributed to the reduction of atmospheric CO2 levels during glacial periods [Sarnthein et al., 1988; Ridgwell, 2002]. Eolian CO3²⁻ would have deposited on the sea surface and increased the alkalinity of subsurface waters in the ocean via

$$\text{CaCO}_3 + \text{CO}_2 + \text{H}_2\text{O} \rightarrow \text{Ca}^{2+} + 2\text{HCO}_3^-$$

(3)

[21] The result is the Pacific Ocean “alkalinity pump” proposed by Boyle [1988] and Broecker and Peng [1989].

[22] The deserts of northern and northwestern China release about ~800 Tg of dust into the atmosphere each year [Zhang et al., 1997]. About 20% of this dust is transported over continental China, and 50% of this amount is subject to long-range transport to the Pacific Ocean and beyond. Since CO3²⁻ accounts for 8.0% of the mass, the amount of airborne CO3²⁻ deposited in the Pacific Ocean could be 32 Tg yr⁻¹; i.e., 3.2 × 10¹³ g yr⁻¹ (1 Tg = 10¹² g). Keir [1995] noted that an additional input of 1.3 × 10¹³ mol yr⁻¹ of dissolved CO3²⁻ from glacial sources could account for half (~40 ppmv) of the atmospheric CO2 difference between the last glacial maximum and the Holocene period. Thus eolian CO3²⁻ deposited at the rate of 3.2 × 10¹³ g yr⁻¹ in the Pacific Ocean may have decreased atmospheric CO2 by ~1.6 ppmv (5.0 × 10¹⁵ mol of carbon (280 ppmv) is the estimated global concentration in the preindustrial global atmosphere [Siegenthaler and Oeschger, 1987]; 1.6 ppmv of CO2 is equal to 2.8 × 10¹⁴ mol of carbon). CO3²⁻ from Asian dust deposited in the Pacific Ocean could lead to the sequestration of CO2 at the rate of 1.0 × 10¹⁵ g yr⁻¹; i.e., 1.0 Pg yr⁻¹ (1 Pg = 10¹⁵ g, or 0.3 Pg carbon). For comparison, the total emission of anthropogenic CO2 from China in 1997 was 8.9 Pg [Gao, 2002]. If Oba and Pedersen's [1999] "raindrop alkalinity pump" is real, eolian CO3²⁻ will also decrease atmospheric CO2. The important role of eolian CO3²⁻ from Asian dust originating in China has been underestimated in previous studies.

4.2. Environmental Effects

[21] About 20% of the suspended dust (800 Tg yr⁻¹) is transported over continental China [Zhang et al., 1997];
therefore about 12.8 Tg yr$^{-1}$ of CO$_3^{2-}$ could be added to the atmosphere of eastern China on the basis of a 8.0% CO$_3^{2-}$/CO$_2$ content. Chemical reactions take place among CO$_3^{2-}$/CO$_2$, SO$_2$, and sulfur in the atmosphere, via

$$\text{SO}_2 + \text{H}_2\text{O} \rightarrow \text{HSO}_3^- \rightarrow \text{H}_2\text{SO}_4$$ (4)

$$\text{CaCO}_3 + \text{H}_2\text{SO}_4 \rightarrow \text{CaSO}_4 + \text{H}_2\text{O} + \text{CO}_2$$ (5)

Accordingly, 12.8 Tg yr$^{-1}$ of CO$_3^{2-}$ may neutralize about 13.4 Tg yr$^{-1}$ of SO$_2$. Compared with the total emission of SO$_2$ (25.2 Tg) from China in 1995 [Streets and Waldhoff, 2000], the SO$_2$ buffered by eolian CO$_3^{2-}$ could absorb more than half of SO$_2$ and CO$_3^{2-}$ to be similarly distributed in space and time. Zhao et al. [1988] observed that high levels of windblown dust dominate the atmospheric buffering capacity in southwestern China. Bulk aerosol data [Winchester and Wang, 1989] from the Asia-Pacific region provide evidence for a statistical relationship between sulfate and dust. Larssen and Carmichael [2000] also observed impacts in Europe and North America associated with high levels of strong acids in precipitation that had not been widely detected in China. This may be partly due to the fact that northern China acid deposition was heavily modified by natural soil dust from desert and semiarid areas. Mineral particles that contained sulfuric acid and sulfate, which formed by heterogeneous processes, were found in the troposphere (4–21 km altitude) in northern China [Xu et al., 2001]. Kawamura et al. [2004] observed that carbonates most likely react with acidic species (such as H$_2$SO$_4$, HNO$_3$, and organic acids) in the atmosphere during long-range transport (atmospheric titration). Dentener et al. [1996] showed that for major portions of the globe, more than 50% of the sulfate was associated with dust. He mentioned that the reaction of SO$_2$ on Ca-rich mineral aerosol was likely to play an important role downwind of arid source regions, which was especially important for regions in Asia. As a result, the eolian CO$_3^{2-}$ that originates from Asian dust source regions has great buffering capacity for neutralizing regional acid rain in Asia.

4.3. Isotopic Marker for Eolian Sources During Long-Range Transport

Isotopic methods also have been used to address the provenance of marine sediments and atmospheric dust particles [Arimoto, 2001]. Much of the early isotopic work on provenance involved studies of strontium (Sr), but more recently samarium (Sm) and neodymium (Nd) isotopes have been used. Rubidium (Rb)–Sr isotope ratios also have been utilized to explain the transport of Asian dust [Kanayama et al., 2002]. 13C and 18O in CO$_3^{2-}$ offer another marker that can be used in conjunction with trace element and other isotopic abundances to better elucidate source origins.

PM$_{2.5}$ were measured in this experiment, in order to determine the extent to which 13C and 18O abundances vary with size, three previous size-separated dust storm samples from Xi’an were used to analyze the stable C-O isotopic composition. These samples were collected by an Anderson 8-stage sampler (Thermo Electron Co., USA) from three heavy dust storms on 18 March 1998, 16 April 1998, and 13 April 2000 [Cao, 2001]. The relationships of δ^{13}C versus δ^{18}O for the three samples are shown in Figure 4. There are no notable differences among various sizes for the three samples. Differences of δ^{13}C abundances between the largest and smallest size fractions are less than -2%. This difference is much lower than the -5.6% difference between the average δ^{13}C abundance in DS and NDS PM$_{2.5}$
samples. The δ^{13}C values appear to decrease with increasing size (Figure 4). Since PM_{2.5} has a longer lifetime, and transports farther than larger size fractions, the PM_{2.5} δ^{13}C are most useful for source apportionment of Asian dust at distant sites.

[27] The CO_{2}− δ^{13}C abundance at Kosan on 21 March 2002 was −1%o [Kawamura et al., 2004], close to the Xi’an −1.4%o abundance. The similarity between the stable carbon in CO_{2}− at Xi’an and at Kosan (2000 km away) implies that 13C in CO_{2}− could distinguish Asian dust from other dust events of great distances from the source.

5. Conclusion

[28] Large amounts of airborne CO_{2}− from Asian dust can affect climatic and environmental changes in the Asian-Pacific region. CO_{2}− accounts for about 8.0% of Asian dust mass on the basis of the analysis of three dust storm events in Xi’an. There are also high CO_{2}− contents (4.7%) in the normal atmosphere in Xi’an. CaCO_{3} is major form of this CO_{2}−. Asian dust is characterized by −2.7%o for δ^{13}C and −5.8%o for δ^{18}O. The supply of airborne CO_{2}− to the Pacific Ocean could facilitate the sequestration of CO_{2} at the rate of 1.0 Pg yr^{−1} (0.3 Pg carbon). The SO_{2} buffered by eolian CO_{2}− could be as high as 13.4 Tg yr^{−1}, which exceeds more than half of the total emission of SO_{2} from China in 1995. Airborne CO_{2}− from Central Asia may provide the most important atmospheric alkaline carbon reservoir for sequestrating CO_{2} and buffering acid rain in the Asian-Pacific region because of high emission of mineral dust and its high content of CO_{2}−.

[29] Acknowledgment. This research was supported by grants from the Chinese National Science Foundation (40121303 and 40205018), a project from the Chinese Ministry of Science and Technology (2001CCEB0100), a National Key Project of Basic Research (G2000048703), and research grants from Hong Kong Polytechnic University (PolyU5308/01E and PolyU5145/03E).

References

Sarnthein, M., et al. (1988), Global variations of surface ocean productivity in low and mid latitudes: Influences on CO₂ reservoirs of the deep ocean and atmosphere during the last 21,000 years, Paleoceanography, 3, 361–399.

Zappoli, S., et al. (1999), Inorganic, organic and macromolecular components of fine aerosol in different areas of Europe in relation to their water solubility, Atmos. Environ., 33, 2733–2743.

Z. S. An, J. J. Cao, Z. X. Shen, Y. Q. Wang, and X. Y. Zhang, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an 710075, China. (cao@loess. lqgg.ac.cn)

J. C. Chow and J. G. Watson, Desert Research Institute, 2215 Raggio Parkway, Reno, NV 89512, USA.

K. Fung, Atmoslytic Inc., 24801 Alexandra Court, Calabasas, CA 91302, USA.

K. F. Ho and S. C. Lee, Research Center for Environmental Technology and Management, Department of Civil and Structural Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.