Skip to main content
U.S. flag

An official website of the United States government

Here’s how you know

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

HTTPS

Secure .gov websites use HTTPS
A lock (LockA locked padlock) or https:// means you have safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Environmental Topics
  • Laws & Regulations
  • Report a Violation
  • About EPA
Contact Us

Grantee Research Project Results

Integration of Waste Treatment with Algal Cultivation for Sustainable Aquaculture Feed and Renewable Biofuel Production

EPA Grant Number: SU835318
Title: Integration of Waste Treatment with Algal Cultivation for Sustainable Aquaculture Feed and Renewable Biofuel Production
Investigators: Bouwer, Edward J. , Williams, Scott H. , Betenbaugh, Michael J. , Rogers, Jon , Rosenberg, Julian , Payne, Julianne , Liu, Kexin , Wilson, Olivia , Bohutskyi, Pavlo
Current Investigators: Bouwer, Edward J. , Fung Shek, Coral J , Betenbaugh, Michael J. , Rosenberg, Julian , Liu, Kexin , Khaled Nasr, Laila , Byers, Natalie , Bohutskyi, Pavlo
Institution: The Johns Hopkins University
EPA Project Officer: Hahn, Intaek
Phase: I
Project Period: August 15, 2012 through August 14, 2013
Project Amount: $15,000
RFA: P3 Awards: A National Student Design Competition for Sustainability Focusing on People, Prosperity and the Planet (2012) RFA Text |  Recipients Lists
Research Category: Pollution Prevention/Sustainable Development , P3 Challenge Area - Sustainable and Healthy Communities , P3 Challenge Area - Air Quality , P3 Awards , Sustainable and Healthy Communities

Description:

Considerable attention has been focused on energy and food production as well as the impact of C, N and P emissions on society and environmental sustainability. These global challenges are far from being solved, and will be addressed by the current project through development and implementation of an innovative technology that utilizes and recycles waste nutrients for sustainable biofuel and/or animal/aquaculture feed production. Algae have multiple advantages as a feedstock for biofuel and feed production: higher productivity; less competition with food; cultivation on non-arable lands; use of impaired water resources and solar energy; and CO2 assimilation. However, algal technologies are not yet economically viable. This project links students from different JHU departments and business partners into a team to advance microalgal biofuels development and subsequent implementation of this more environmentally-friendly process for generating energy and valuable algal-meal. The proposed research involves the integration of a number of vital elements for human prosperity and embodies a robust synergy of waste stream treatment, renewable energy generation, and food production.

Objective:

The objective of this project is to develop, test and optimize a robust and sustainable process that converts agricultural and domestic organic waste, CO2, and sunlight into energy (biodiesel and biomethane) and/or algal-meal for animal/aquaculture feed. Specifically, the project includes investigation of algal cultivation in anaerobic digestion (AD) effluent and comparison of four alternative technologies for algal biomass utilization: (1) biological conversion to biogas through AD; (2) preliminary lipids extraction and AD of defatted residues to biogas; (3) utilization of whole algal biomass for fish farming; and (4) preliminary lipids extraction and usage of defatted algae as algal-meal for fish-farming.

Approach:

The technical milestones of this proposal provide innovations in coupling AD effluent and photosynthetic algae cultivation. These include: (1) control and management of pathogens in complex algal-bacterial population; (2) augmenting the productivity microalgal growth systems; (3) optimizing the conversion of algal biomass into biomethane, through thermochemical or enzymatic pretreatment; and (4) ensuring consistent composition of algal biomass as premium-grade aquaculture feed. Moreover, the proposed research will explore fundamental operating parameters; nutrient (N, P) and contamination flow analysis and balance; and quality control of biomass composition to achieve the most efficient production rates.

Expected Results:

The proposed project supports new research efforts to develop sustainable biofuel and food production by combining algal technology with AD in an efficient process to convert agricultural and sewage waste, CO2, and sunlight into biodiesel, biomethane, and algal meal. A student team will perform bench-scale experiments, design a pilot-scale algal bioreactor based on their initial findings, and perform life-cycle and techno-economic analyses.

Publications and Presentations:

Publications have been submitted on this project: View all 3 publications for this project

Journal Articles:

Journal Articles have been submitted on this project: View all 3 journal articles for this project

Supplemental Keywords:

waste-to-value management, waste-to-energy, carbon sequestration, algal biodiesel, biomethane, anaerobic digestion, enzymatic or thermochemical pretreatment

Progress and Final Reports:

  • Final Report
  • Top of Page

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.

    Project Research Results

    • Final Report
    3 publications for this project
    3 journal articles for this project

    Site Navigation

    • Grantee Research Project Results Home
    • Grantee Research Project Results Basic Search
    • Grantee Research Project Results Advanced Search
    • Grantee Research Project Results Fielded Search
    • Publication search
    • EPA Regional Search

    Related Information

    • Search Help
    • About our data collection
    • Research Grants
    • P3: Student Design Competition
    • Research Fellowships
    • Small Business Innovation Research (SBIR)
    Contact Us to ask a question, provide feedback, or report a problem.
    Last updated April 28, 2023
    United States Environmental Protection Agency

    Discover.

    • Accessibility
    • Budget & Performance
    • Contracting
    • EPA www Web Snapshot
    • Grants
    • No FEAR Act Data
    • Plain Writing
    • Privacy
    • Privacy and Security Notice

    Connect.

    • Data.gov
    • Inspector General
    • Jobs
    • Newsroom
    • Open Government
    • Regulations.gov
    • Subscribe
    • USA.gov
    • White House

    Ask.

    • Contact EPA
    • EPA Disclaimers
    • Hotlines
    • FOIA Requests
    • Frequent Questions

    Follow.