Skip to main content
U.S. flag

An official website of the United States government

Here’s how you know

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

HTTPS

Secure .gov websites use HTTPS
A lock (LockA locked padlock) or https:// means you have safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Environmental Topics
  • Laws & Regulations
  • Report a Violation
  • About EPA
Contact Us

Grantee Research Project Results

Regenerable Biocidal Nanocomposite Through a Green Process

EPA Contract Number: EPD07033
Title: Regenerable Biocidal Nanocomposite Through a Green Process
Investigators: Wan, Jiang
Small Business: Leak Indicator Paint Systems, Inc.
EPA Contact: Richards, April
Phase: I
Project Period: March 1, 2007 through August 31, 2007
Project Amount: $69,665
RFA: Small Business Innovation Research (SBIR) - Phase I (2007) RFA Text |  Recipients Lists
Research Category: SBIR - Nanotechnology , Small Business Innovation Research (SBIR)

Description:

Biocidal polymers have begun to find applications in areas where traditional small biocidal molecules are unable to compete. For example, a biocidal polymer based on halamine chemistry has recently been introduced to disinfect water supply on aircrafts. Several major medical supply companies started marketing beddings, linens, and wipes treated with biocidal polymers to hospitals and nursing homes.

However, the production of halamine polymer often requires hazardous materials and complex reaction conditions to carry out, and therefore is expensive to produce. As a result, the pace to develop new applications and penetrate into markets where small biocidal molecules dominate has been slow.

Leak Indicator Paint Systems, Inc. recognized the need for a low-cost biocidal polymer in the marketplace and has risen to the challenge to develop a new class of biocidal nanocomposite through a green chemistry process. The production is carried out in a two-step process in water at ambient conditions using starting materials that are commercially available in large quantities. The nanocomposite is capable of inactivating fecal coliform and Escherichia coli in wastewater samples collected from a wastewater treatment plant, achieving 99.999 percent reduction in less than 20 minutes of contact time. The biocidal nanocomposite is stable even after 6 months of storage. In addition, by adopting methods commonly practiced in the textile industry, a process has been worked out to permanently fix the nanocomposite to a cellulose-based substrate such as cotton textile. Envisioned applications range from biocidal filters to cotton-based wipes for disinfection of water and homeland security applications such as decontamination of biologically contaminated equipment.

In this Phase I project, we will further expand preliminary work on the development of this new class of biocidal nanocomposite. The objectives include characterization using additional analytical tools, evaluating antimicrobial efficacy of treated cotton fabric against both gram-positive and gram-negative microorganisms, and optimizing the production process. Process parameters obtained will be used to perform cost analysis of producing value-added products in a Phase II project with the goal of eventual commercialization.

Supplemental Keywords:

small business, SBIR, EPA, biocidal polymer, biocidal nanocomposite, nanocomposite, green chemistry,, RFA, Scientific Discipline, INTERNATIONAL COOPERATION, Sustainable Industry/Business, Sustainable Environment, Environmental Chemistry, Technology for Sustainable Environment, Environmental Monitoring, pollution prevention, Chemicals Management, environmental technology, homeland security, nanoparticle remediation, cleaner production, nanocomposite, biocidal disinfection, bioterrorism, nanotechnology, alternative materials, environmentally applicable nanoparticles, disinfection

Progress and Final Reports:

  • Final
  • Top of Page

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.

    Project Research Results

    • Final

    Site Navigation

    • Grantee Research Project Results Home
    • Grantee Research Project Results Basic Search
    • Grantee Research Project Results Advanced Search
    • Grantee Research Project Results Fielded Search
    • Publication search
    • EPA Regional Search

    Related Information

    • Search Help
    • About our data collection
    • Research Grants
    • P3: Student Design Competition
    • Research Fellowships
    • Small Business Innovation Research (SBIR)
    Contact Us to ask a question, provide feedback, or report a problem.
    Last updated April 28, 2023
    United States Environmental Protection Agency

    Discover.

    • Accessibility
    • Budget & Performance
    • Contracting
    • EPA www Web Snapshot
    • Grants
    • No FEAR Act Data
    • Plain Writing
    • Privacy
    • Privacy and Security Notice

    Connect.

    • Data.gov
    • Inspector General
    • Jobs
    • Newsroom
    • Open Government
    • Regulations.gov
    • Subscribe
    • USA.gov
    • White House

    Ask.

    • Contact EPA
    • EPA Disclaimers
    • Hotlines
    • FOIA Requests
    • Frequent Questions

    Follow.