Skip to main content
U.S. flag

An official website of the United States government

Here’s how you know

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

HTTPS

Secure .gov websites use HTTPS
A lock (LockA locked padlock) or https:// means you have safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Environmental Topics
  • Laws & Regulations
  • Report a Violation
  • About EPA
Contact Us

Grantee Research Project Results

Limits to Species’ Distribution and Persistence: A Landscape Genetics Study of Two Amphibian Species in Yellowstone National Park

EPA Grant Number: F6F21367
Title: Limits to Species’ Distribution and Persistence: A Landscape Genetics Study of Two Amphibian Species in Yellowstone National Park
Investigators: Murphy, Melanie
Institution: Washington State University
EPA Project Officer: Packard, Benjamin H
Project Period: September 1, 2006 through September 1, 2009
Project Amount: $111,344
RFA: STAR Graduate Fellowships (2006) RFA Text |  Recipients Lists
Research Category: Academic Fellowships , Ecological Indicators/Assessment/Restoration , Fellowship - Terrestrial Ecology

Objective:

My objective is to test how landscape features influence species’ dispersal, species’ distributions, and population persistence. I will address the following questions using the boreal toad (patchy distribution, declining) and boreal chorus frog (continuous distribution, abundant) in Yellowstone National Park:

  • What anthropogenic and ecological landscape features limit gene flow in anurans?
  • Why do some species have more restricted distributions than others?
  • Are amphibians declining in protected areas?

Approach:

A central objective of conservation biology is to understand processes that shape species’ distributions and population persistence. The emerging discipline of landscape genetics provides a conceptual framework to address these processes, through an integration of landscape ecology, spatial statistics, and population genetics. A landscape genetics approach is ideal for modeling amphibian systems because amphibians generally have population genetic structure on appropriate geographic scales and are sensitive to landscape characteristics, including land use change.

In my preliminary research, I developed a unique method to represent gene flow as a continuous spatial response variable. This method newly enables analysis of the influence of continuous (e.g., elevation, moisture), as well as discrete (e.g., roads, land cover), landscape variables on gene flow. I will implement this methodology to create landscape genetic models of gene flow for the two study species and to determine the landscape variables that explain patchy vs. continuous distributions. Finally, I will test for genetic signatures of recent population declines. If population declines are detected; I will model population status (decline vs. no decline) based on landscape variables and presence of a chytrid fungus (B. dendrobatidis), a pathogen implicated in the global decline of amphibians.

Expected Results:

I predict that gene flow in P. maculata will be more limited than B. boreas due to smaller empirically-estimated dispersal distances, and influenced by habitat connectivity and moisture. I also predict that B. boreas is in decline through at least part of its range due to presenceof chytrid fungus (B. dendrobatidis).

Supplemental Keywords:

Landscape genetics, amphibians, amphibian decline, landscape variables, habitat quality, chytrid, amphibian disease, Ecosystem Protection/Environmental Exposure & Risk, Scientific Discipline, Ecology and Ecosystems, Environmental Monitoring, Habitat, conservation biology, habitat fragmentation, habitat loss, habitat population structure, habitat use, B. dendrobatidis,, Scientific Discipline, Ecosystem Protection/Environmental Exposure & Risk, Habitat, Environmental Monitoring, Biology, dynamic landscapes, habitat dynamics, species interaction, landscape genetics models, habitat use, land use effects, habitat disturbance, anthropogenic stressors, ecological consequences, conservation biology

Progress and Final Reports:

  • 2007
  • 2008
  • Final
  • Top of Page

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.

    Site Navigation

    • Grantee Research Project Results Home
    • Grantee Research Project Results Basic Search
    • Grantee Research Project Results Advanced Search
    • Grantee Research Project Results Fielded Search
    • Publication search
    • EPA Regional Search

    Related Information

    • Search Help
    • About our data collection
    • Research Grants
    • P3: Student Design Competition
    • Research Fellowships
    • Small Business Innovation Research (SBIR)
    Contact Us to ask a question, provide feedback, or report a problem.
    Last updated April 28, 2023
    United States Environmental Protection Agency

    Discover.

    • Accessibility
    • Budget & Performance
    • Contracting
    • EPA www Web Snapshot
    • Grants
    • No FEAR Act Data
    • Plain Writing
    • Privacy
    • Privacy and Security Notice

    Connect.

    • Data.gov
    • Inspector General
    • Jobs
    • Newsroom
    • Open Government
    • Regulations.gov
    • Subscribe
    • USA.gov
    • White House

    Ask.

    • Contact EPA
    • EPA Disclaimers
    • Hotlines
    • FOIA Requests
    • Frequent Questions

    Follow.