Skip to main content
U.S. flag

An official website of the United States government

Here’s how you know

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

HTTPS

Secure .gov websites use HTTPS
A lock (LockA locked padlock) or https:// means you have safely connected to the .gov website. Share sensitive information only on official, secure websites.

  • Environmental Topics
  • Laws & Regulations
  • Report a Violation
  • About EPA
Contact Us

Grantee Research Project Results

Hydrological Impacts of Woody Plant Encroachment in Arid and Semiarid Grasslands

EPA Grant Number: F6F11227
Title: Hydrological Impacts of Woody Plant Encroachment in Arid and Semiarid Grasslands
Investigators: Kim, John H.
Institution: Duke University
EPA Project Officer: Hahn, Intaek
Project Period: September 1, 2006 through September 1, 2008
Project Amount: $111,172
RFA: STAR Graduate Fellowships (2006) RFA Text |  Recipients Lists
Research Category: Ecological Indicators/Assessment/Restoration , Academic Fellowships , Fellowship - Ecohydrology

Objective:

Understanding how these changes modify hydrological processes is vital for effective management of water and vegetation. This research will focus on the ecosystem level water-use changes brought on by vegetation changes and human land-use. How these changes affect the various components of the hydrological cycle will be assessed.

I will assess the effects of vegetation changes (woody shrubs replacing grassland) and land-use on the hydrological cycle and focus on groundwater recharge, thereby developing a better framework for ecohydrology in arid regions. Combining rainfall simulations in paired grassland/shrub sites across different management practices, I hope to determine the effect of woody shrubs on runoff and recharge. I will explore the following questions: Question 1: How are the hydrological processes affected by woody plant encroachment? Question 2: How do different land management practices, namely discing (a method of shrub control in many areas) and grazing affect hydraulic properties of soil? How do the spatial scale of observation and different rainfall intensities affect the hydrological impact of land-use?

Approach:

Rainfall will be applied above the canopy level on paired shrub/native grassland sites as well as in different land-use areas (grassland, grazed, disced). The plots will be monitored continuously for water budget including precipitation, soil water, transpiration, interception, runoff, subsurface flow, recharge, and vegetation and soil characteristics. A set of rainfall simulation experiments will consist of 1) a short, intense rainfall event with an application rate of 100 mm/hour for one hour, and 2) 10 mm/hour for 24 hours. I will use the two intensities of rainfall simulation to determine the effect of rainfall intensity on runoff. These combined efforts will give nested data on runoff at the microplot (0.5 m2), plot (36 m2), and small-catchment scales (Honey Creek Watershed measurements). In addition, these data may be compared with those from the large-scale runoff monitoring being carried out by the USGS in the adjacent Guadalupe River basin. Runoff data collected from this study and ongoing data-collection by the NRCS and the USGS will form the basis for comparisons of runoff at multiple scales. Data loggers will be used to collect data from sapflux sensors, rain gauges with float and potentiometer, tipping bucket gauges, flume with electronic flow meters, and ponded/tension infiltrometers. Vegetation cover will be assessed with recent aerial photographs.

Expected Results:

Woody plants may be able to access deeper groundwater for year-round transpiration and thus consume more water than grasses, affecting recharge, soil moisture and runoff. Amount of water available to plants from precipitation is determined in part by nfiltration rates into the soil. Intense grazing can increase soil compaction and hence runoff. Current management efforts to curtail the encroachment such as discing may enhance infiltration rates, although loosened soil can be lost as runoff in intense precipitation events. These processes can affected by rainfall intensity and can be independent of scale.

Supplemental Keywords:

Juniper encroachment, groundwater, land-use, grazing, grassland, plant water-use, arid regions,, RFA, Ecosystem Protection/Environmental Exposure & Risk, Scientific Discipline, ECOSYSTEMS, Ecological Indicators, Ecosystem Protection, Ecosystem/Assessment/Indicators, Ecological Monitoring, Ecological Effects - Environmental Exposure & Risk, Ecology and Ecosystems, Environmental Monitoring, assessment models, ecological assessment, anthropogenic effects, arid conditions, ecosystem management, grasslands, groundwater, water use, hydrodynamics, land use and sustainability

Progress and Final Reports:

  • 2007
  • Final
  • Top of Page

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.

    Site Navigation

    • Grantee Research Project Results Home
    • Grantee Research Project Results Basic Search
    • Grantee Research Project Results Advanced Search
    • Grantee Research Project Results Fielded Search
    • Publication search
    • EPA Regional Search

    Related Information

    • Search Help
    • About our data collection
    • Research Grants
    • P3: Student Design Competition
    • Research Fellowships
    • Small Business Innovation Research (SBIR)
    Contact Us to ask a question, provide feedback, or report a problem.
    Last updated April 28, 2023
    United States Environmental Protection Agency

    Discover.

    • Accessibility
    • Budget & Performance
    • Contracting
    • EPA www Web Snapshot
    • Grants
    • No FEAR Act Data
    • Plain Writing
    • Privacy
    • Privacy and Security Notice

    Connect.

    • Data.gov
    • Inspector General
    • Jobs
    • Newsroom
    • Open Government
    • Regulations.gov
    • Subscribe
    • USA.gov
    • White House

    Ask.

    • Contact EPA
    • EPA Disclaimers
    • Hotlines
    • FOIA Requests
    • Frequent Questions

    Follow.